Detailed Site Investigation

453 – 459 Canterbury Road, Campsie, NSW

59917080

Prepared for Hailiang Campsie Pty Ltd

30 August 2017

Contact Information

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

Level 9 - The Forum 203 Pacific Highway St Leonards 2065 Australia

www.cardno.com Phone +61 2 9496 7700 Fax +61 2 9496 7748

Document Information

Prepared for	Hailiang Campsie Pty Ltd
Project Name	453 – 459 Canterbury Road, Campsie, NSW
File Reference	Document3
Job Reference	59917080
Date	30 August 2017
Version Number	Rev0

Author(s):

Dy-alde

Steven Drysdale	Effective Date	30/08/2017
Environmental Scientist		
Approved By:		
12		
Hugh Selby	Date Approved	30/08/2017
Senior Scientist		

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
Ver01	24/02/2017	Internal Draft	SD/CK	HS
RevA	24/02/2017	External Draft	SD/CK	HS
Rev0	30/08/2017	Final	SD	HS

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

2.1Site Definition52.2Site Description52.3Surrounding Land Uses72.4Topography and Drainage72.5Regional Geology and Hydrogeology72.5.1Groundwater Use82.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria15	Table	e of Con	tents		iii
1 Introduction 1 1.1 Background 1 1.2 Purpose and Objectives 1 1.3 Scope 1 1.4 Assessment Timeframe 2 1.5 Structure of this Report 2 1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Description 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3 Site Investigations 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4.1 Soil Assessment Criteria 14 4.2 Groundwater Assessment Criteria 16 5.1.2<	Арре	endices			iv
1.1 Background 1 1.2 Purpose and Objectives 1 1.3 Scope 1 1.4 Assessment Timeframe 2 1.5 Structure of this Report 2 1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Description 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3 Site Investigations 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 </th <th>Table</th> <th>es</th> <th></th> <th></th> <th>iv</th>	Table	es			iv
1.2 Purpose and Objectives 1 1.3 Scope 1 1.4 Assessment Timeframe 2 1.5 Structure of this Report 2 1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Definition 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3 Site Investigation Program 91 3.1 Data Quality Objectives 9 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 16 5.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16	1	Introdu	ction		1
1.3Scope11.4Assessment Timeframe21.5Structure of this Report21.6Limitations32Site Condition and Surrounding Environment52.1Site Definition52.2Site Description52.3Surrounding Land Uses72.4Topography and Drainage72.5Regional Geology and Hydrogeology72.5.1Groundwater Use82.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.3Polycholoniated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		1.1	Backgrou	und	1
1.4 Assessment Timeframe 2 1.5 Structure of this Report 2 1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Description 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 16 5.1.2 Groundwater Field Parameters 16 5.1.2 Groundwater Field Parameters 16 5.2.3 Soil Laboratory Results 16 5.3.1 Petroleum Hydrocarbons 16 5.3.2 Pesticides 17 5.3.3		1.2	Purpose	and Objectives	1
1.5 Structure of this Report 2 1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Definition 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 16 5.1.2 Groundwater Field Parameters 16 5.1.2 Groundwater Field Parameters 16 5.1.2 Groundwater Field Parameters 16 5.2.2 Soil Laboratory Results 16 5.3.3 Polychorinated biphenyls 17 5.3.4 Metals 17 5.3.5<		1.3	Scope		1
1.6 Limitations 3 2 Site Condition and Surrounding Environment 5 2.1 Site Description 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 3.2.1 Sampling Strategy and Methodology 11 4.1 Soil Assessment Criteria 14 4.2.2 Groundwater Assessment Criteria 15 5 Results 16 5.1.2 Groundwater Field Parameters 16 5.2 Soil Field Screening Results 16 5.3.1 Petr		1.4	Assessm	nent Timeframe	2
2 Site Condition and Surrounding Environment 5 2.1 Site Description 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 15 5 Results 16 5.1.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16 5.2 Soil Field Screening Results 16 5.3.1 Petroleum		1.5	Structure	e of this Report	2
2.1 Site Definition 5 2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 14 4.2 Groundwater Assessment Criteria 15 5.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16 5.2 Soil Field Screening Results 16 5.3 Soil Laboratory Results 16 5.3.1 Petroleum Hydrocarbons 16 5.3.2 Pesticides 17 5.3.3 Polychorinated biphen		1.6	Limitatio	ns	3
2.2 Site Description 5 2.3 Surrounding Land Uses 7 2.4 Topography and Drainage 7 2.5 Regional Geology and Hydrogeology 7 2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3.1 Data Quality Objectives 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 14 4.2 Groundwater Assessment Criteria 15 5.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16 5.3 Soil Laboratory Results 16 5.3.1 Petroleum Hydrocarbons 16 5.3.2 Pesticides 17 5.3.3 Polychorinated biphenyls 17 5.3.4 Metal	2	Site Co	ndition a	and Surrounding Environment	5
2.3Surrounding Land Uses72.4Topography and Drainage72.5Regional Geology and Hydrogeology72.5.1Groundwater Use82.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria165.1Field Observations165.1.2Groundwater Field Parameters165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.1	Site Defi	nition	5
2.4Topography and Drainage72.5Regional Geology and Hydrogeology72.5.1Groundwater Use82.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.3Soil Laboratory Results165.3Soil Laboratory Results165.3.4Metals175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.2	Site Des	cription	5
2.5 Regional Geology and Hydrogeology 7 2.5.1 Groundwater Use 8 2.5.2 Acid Sulfate Soils 8 2.6 Previous Reports 8 2.7 Proposed Development 8 3 Site Investigations 9 3.1 Data Quality Objectives 9 3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 3.2.1 Sampling Strategy and Methodology 11 4.1 Soil Assessment Criteria 14 4.1 Soil Assessment Criteria 14 4.2 Groundwater Assessment Criteria 15 5 Results 16 5.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16 5.3 Soil Laboratory Results 16 5.3 Soil Laboratory Results 16 5.3.1 Petroleum Hydrocarbons 16 5.3.2 Pesticides 17 5.3.3 Polychlorinated biphenyls 17 5.3.4 Metals		2.3	Surround	ding Land Uses	7
2.5.1Groundwater Use82.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.4	Topogra	phy and Drainage	7
2.5.2Acid Sulfate Soils82.6Previous Reports82.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.5	Regional	I Geology and Hydrogeology	7
2.6Previous Reports82.7Proposed Development83.1Pota Quality Objectives93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.2Soil Laboratory Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			2.5.1	Groundwater Use	8
2.7Proposed Development83Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.4Metals175.3.5Polychlorinated biphenyls175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			2.5.2	Acid Sulfate Soils	8
3Site Investigations93.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.6	Previous	Reports	8
3.1Data Quality Objectives93.2Investigation Program113.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		2.7	Proposed	d Development	8
3.2 Investigation Program 11 3.2.1 Sampling Strategy and Methodology 11 4 Assessment Criteria 14 4.1 Soil Assessment Criteria 14 4.2 Groundwater Assessment Criteria 15 5 Results 16 5.1 Field Observations 16 5.1.2 Groundwater Field Parameters 16 5.2 Soil Laboratory Results 16 5.3 Soil Laboratory Results 16 5.3.2 Pesticides 17 5.3.3 Polychlorinated biphenyls 17 5.3.4 Metals 17 5.3.5 Polycyclic Aromatic Hydrocarbons/Phenols 17	3	Site Inv	estigatio	ons	9
3.2.1Sampling Strategy and Methodology114Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		3.1	Data Qua	ality Objectives	9
4Assessment Criteria144.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		3.2	Investiga	ation Program	11
4.1Soil Assessment Criteria144.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			3.2.1	Sampling Strategy and Methodology	11
4.2Groundwater Assessment Criteria155Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17	4	4 Assessment Criteria		14	
5Results165.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		4.1	Soil Asse	essment Criteria	14
5.1Field Observations165.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		4.2	Groundw	vater Assessment Criteria	15
5.1.2Groundwater Field Parameters165.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17	5	Results			16
5.2Soil Field Screening Results165.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		5.1	Field Ob	servations	16
5.3Soil Laboratory Results165.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			5.1.2	Groundwater Field Parameters	16
5.3.1Petroleum Hydrocarbons165.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		5.2	Soil Field	d Screening Results	16
5.3.2Pesticides175.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17		5.3	Soil Labo	oratory Results	16
5.3.3Polychlorinated biphenyls175.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			5.3.1	Petroleum Hydrocarbons	16
5.3.4Metals175.3.5Polycyclic Aromatic Hydrocarbons/Phenols17			5.3.2	Pesticides	17
5.3.5 Polycyclic Aromatic Hydrocarbons/Phenols 17			5.3.3	Polychlorinated biphenyls	17
			5.3.4	Metals	17
5.3.6 Asbestos 17			5.3.5	Polycyclic Aromatic Hydrocarbons/Phenols	17
			5.3.6	Asbestos	17

	5.4	Groundwater Laboratory Results		17
		5.4.1	Physical Parameters	17
		5.4.2	Metals	18
		5.4.3	Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene	18
		5.4.4	Total Recoverable Hydrocarbons	18
		5.4.5	Polycyclic Aromatic Hydrocarbons	18
		5.4.6	Pesticides and Polychlorinated Biphenyls	18
	5.5	Quality A	Assurance / Quality Control	18
	5.6	DQO Ste	ep Completion	19
6	Discussion			20
	6.1	Field Sci	reening	20
	6.2	Soil Investigation Results		20
	6.3	Groundwater Investigation Results		20
	6.4	Conceptual Site Model		20
		6.4.1	Uncertainties	22
7	Conclu	sion		23
	7.1	Conclusi	ions	23
	7.2	Recomm	nendations	23
8	Referer	nces		24

Appendices

Appendix A	Figures	
Appendix B	Borehole logs	
Appendix C	Laboratory summary tables	
Appendix D	Photographic log	
Appendix E	QA / QC Report	
Appendix F	Calibration Certificates	
Appendix G	Summary of Previous Reports	
Appendix H	Field Notes	
Appendix I	Laboratory Reports	

Tables

Table 1-1	Site Investigation Timeline	2
Table 2-1	Site Identification	5
Table 2-2	Site Inspection	6

Table 2-3	Surrounding Land Use	7
Table 3-1	Summary of Data Quality Objectives and Indicators	9
Table 3-2	Investigation Activity Summary	11
Table 3-3	Summary of samples collected	13
Table 5-1	Typical Soil Profile	16
Table 5-2	Groundwater Physical Parameters	16
Table 5-3	Summary of Data Quality Objectives	19

Abbreviations and Units

BTEXN	Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene
MAH	Monocyclic Aromatic Hydrocarbons
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
SVOC	Semi-Volatile Organic Compounds
TDS	Total Dissolved Solids
TOC	Total Organic Carbon
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
VOC	Volatile Organic Compounds

Technical Terms

ACM	Asbestos Containing Material
AGL	Above Ground Level
AHD	Australian Height Datum
AMG	Australian Map Grid
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Aboveground Storage Tank
BDL	Below Detection Limit
BGL	Below Ground Level
COC	Chain of Custody
CoPC	Contaminants of Potential Concern
DNAPL	Dense Non-Aqueous Phase Liquid
DO	Dissolved Oxygen
DSI	Detailed Site Investigation
EC	Electrical Conductivity
ECe	Electrical Conductivity of the Saturated Extract
EILs	Environmental Investigation Levels
EPA	Environment Protection Authority
EPL	Environment Protection Licence
GCMS	Gas Chromatograph - Mass Spectrometer
GME	Groundwater Monitoring Event
GPR	Ground Penetrating Radar
HILs	Health based Investigation Levels
LDPE	Low-Density Polyethylene
LNAPL	Light Non-Aqueous Phase Liquid
LOR	Limit of Reporting
N/A	Not Applicable
NAPL	Non-Aqueous Phase Liquid
NEPM	National Environment Protection Measure

OEH	Office of Environment and Heritage
ORP	Oxidation-Reduction Potential
PID	Photo-ionisation Detector
PQL	Practical Quantitation Limit
PSH	Phase Separated Hydrocarbon
PSI	Preliminary Site Investigation
QA	Quality Assurance
QC	Quality Control
RL	Reduced Level
RPD	Relative Percentage Difference
SWL	Standing Water Level
UCL	Upper confidence Limit
UST	Underground Storage Tank

Units

На	Hectares
mAHD	Metres Australian Height Datum
mBGS	Metres Below Ground Surface
mBGL	Metres Below Ground Level
mg/kg	Milligram per Kilogram (approximately equivalent to ppm)
mg/L	Milligram per Litre
mTOC	Metres below Top of Casing
ppb	Part per Billion
ppm	Parts per Million
µg/kg	Microgram per Kilogram (approximately equivalent to ppb)
µg/L	Microgram per Litre
µS/cm	Micro Siemens per Centimetre

1 Introduction

1.1 Background

Cardno (NSW/ACT) Pty Ltd ("Cardno") was engaged by Hailiang Property Campsie Pty Ltd ("the Client") to undertake a Detailed Site Investigation (DSI) to assess potential contamination at 453-459 Canterbury Road, Campsie, NSW ("the Site"). The location and features of the Site are shown in **Figures 1** and **2** in **Appendix A**.

The Site has historically been used for residential and light commercial activities, with underground petroleum storage tanks (USTs) believed to remain on Site. The Site's main commercial activities included:

- > Automobile storage and maintenance
- > The presence of potentially two USTs near the workshop.

Previous environmental investigations at the Site indicated the potential for impacted soil and groundwater to be present, along with asbestos cement building materials. The Site is proposed to be redeveloped to comprise several above ground storeys with one level of basement car parking requiring excavating to a depth of approximately 3 metres below ground level.

This report sets out the findings of the intrusive investigations at the Site.

1.2 Purpose and Objectives

The purpose of this investigation is to provide the Client with advice on the contamination status of the Site and the consequent implications for its intended use.

The objectives of the investigation are to:

- > Assess the nature and extent of potential contamination of soil and groundwater at the Site
- > Develop the Conceptual Site Model
- > Assess the potential for risk to human health and ecological receptors
- > Collect data to assist in developing management options for the change in land use at the Site
- > Assess the requirement, if any, for further assessment and/or management of potential contamination at the Site.

1.3 Scope

Cardno carried out the following scope of work to meet the objectives of the assessment:

- > Reviewed past reports to define the Site, features and surrounds including:
 - Defined Site boundaries based on land title information
 - Defined Site features including services, main buildings and other infrastructure
 - Defined topography, surface water flows and drainage
 - Identified nearby sensitive receivers
 - Reviewed regional and local geology and hydrogeology.
- > Assessed Site conditions and the surrounding environment from the following sources:
 - Site inspection to confirm Site features including Site access requirements, potential borehole locations and indicators of contamination
 - Review of information provided in the previous reports for the Site.
- > Undertook the following intrusive investigations:
 - Clearance of the borehole locations using Electronic Detection and Ground Penetrating Radar (GPR)
 - Advanced thirteen (13) boreholes within the Site as follows:

- Eight (8) boreholes to a maximum depth of 3.1 metres below ground level (mBGL) using a drilling rig
- o Two (2) boreholes to a maximum depth of 0.5 mBGL using a hand auger
- Three (3) boreholes to a maximum depth of 6.3 mBGL and conversion to groundwater monitoring wells.
- Submitted twenty (20) soil samples (plus 2 QAQC samples) to NATA accredited laboratories for analysis of:
 - Total Petroleum Hydrocarbons (TPH)
 - Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene (BTEXN)
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - o Phenol
 - Heavy metals (arsenic, cadmium, chromium, nickel, zinc, lead, mercury)
 - o Organochlorine Pesticides (OCP)
 - Polychlorinated biphenyls (PCBs)
 - o Asbestos.
- Submitted three (3) groundwater samples (plus 1 QAQC sample) to NATA accredited laboratories for analysis of:
 - o TPH
 - o BTEXN
 - o PAHs
 - Heavy metals (arsenic, cadmium, chromium, nickel, copper, zinc, lead, mercury)
 - o PCBs
 - o OCP.
- Prepared this Detailed Site Investigation Report.

1.4 Assessment Timeframe

The key milestones during this assessment are summarised in Table 1-1.

Table 1-1 Site Inv	vestigation Timeline				
Date	Activity / Milestone				
8/12/2016	Cardno engaged by the Client.				
17-19/01/2017	Soil sampling and groundwater well installation.				
07/02/2017	Groundwater sampling.				
24/02/2017	Draft DSI report issued.				
30/08/2017	Final DSI report issued.				

1.5 Structure of this Report

The structure of this report is as follows:

> **Section1** – introduction

- > Section 2 describes the Site condition and surrounding environment
- > Section 3 details the investigations undertaken
- > Section 4 summarises of contamination assessment criteria
- > Section 5 details the results of the laboratory analysis
- > Section 6 discusses the results and observations
- > **Section 7** provides conclusions and recommendations
- > Section 8 references.

1.6 Limitations

This assessment has been undertaken in general accordance with the current "industry standards" for a contamination assessment for the purpose, objectives and scope identified in this report. These standards are set out in:

- > National Environment Protection Measure (NEPM) Assessment of Site Contamination 1999 (NEPC, 1999) as varied May 2013 (the 'NEPM 2013').
- > AS4482.1- 2005: Guide to the sampling and investigation of potentially contaminated soil Part 1: Nonvolatile and semi-volatile compounds. Standards Australia (2005).

The scope of this assessment is limited to the scope identified in **Section 1.3**. The assessment may not identify contamination occurring in all areas of the Site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained.

This Document has been provided by Cardno subject to the following limitations:

- > This Document has been prepared for the particular purpose outlined in Cardno's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- > The scope and the period of Cardno's services are as described in Cardno's proposal, and are subject to restrictions and limitations. Cardno did not perform a complete assessment of all possible conditions or circumstances that may exist at the Site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Cardno in regards to it.
- > Conditions may exist which were undetectable given the limited nature of the enquiry Cardno was retained to undertake with respect to the Site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the Site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Cardno's opinions are based upon information that existed at the time of the production of the Document. It is understood that the services provided allowed Cardno to form no more than an opinion of the actual conditions of the Site at the time this Document was prepared and cannot be used to assess the effect of any subsequent changes in the quality of the Site, or its surroundings, or any laws or regulations.
- > Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- > Where data supplied by the client or other external sources, including previous Site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Cardno for incomplete or inaccurate data supplied by others.
- > Cardno may have retained sub consultants affiliated with Cardno to provide services for the benefit of Cardno. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any

direct legal recourse to, and waives any claim, demand, or cause of action against, Cardno's affiliated companies, and their employees, officers and directors.

This assessment report is not any of the following:

- > A Site Audit Report or Site Audit Statement as defined under the *Contaminated Land Management Act,* 1997.
- > A detailed hydrogeological assessment in conformance with NSW DEC (2007) Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination.
- > An assessment of groundwater contaminants potentially arising from other Sites or sources nearby.

2 Site Condition and Surrounding Environment

2.1 Site Definition

The Site is located at 453-459 Canterbury Road, Campsie approximately 11 kilometres (km) south-west of the Sydney CBD. The Site location is shown in **Figure 1** in **Appendix A** with Site details presented in **Table 2-1**.

Table 2-1 Site Identification	
Item	Details
Site Address	453-459 Canterbury Road, Campsie New South Wales
Approximate Site Area (ha)	0.45
Title Details	Lot 13 and Lot 15 DP 3995
	Lot 3 DP 337683
	Lot A and Lot B DP 355656
	Lot A and Lot B DP 391661
	Lot A and Lot B DP 416123
Local Government Area	City of Canterbury-Bankstown Council

2.2 Site Description

The Site comprises light commercial facilities with frontage to Canterbury Road to the south, Stanley Street to the west and low density residential to the north and east. The Site is comprised of a warehouse style building divided into four portions with a separate business operating in each portion. Businesses operating out of the Site include:

- > Commercial premises (including a toy shop and grocery store)
- > A mechanics workshop
- > A mattress factory and associated shopfront.

A Site plan is presented in Figure 2, Appendix A.

Site surface coverings consist almost entirely of hardstand concrete, with some unsealed car parking areas behind the mechanics workshop and limited areas of landscaping and grass. Light commercial activities (automobile servicing) and storage and distribution of materials is expected to be primarily located within the mechanic workshop and mattress factory within the north-western portion of the Site.

An inspection of the Site was undertaken on the 17th of January 2017. Details of observations made during the Site inspection are provided in **Table 2-2**.

Item	Observations The Site was observed to be used for multiple light commercial activities with a mechanics workshop, mattress production, sales business and commercial premises operating at the time of the inspection.					
Site use						
Site slope and drainage features	The topography was observed to generally slope slightly away from the Site towards the north-east with an approximate elevation of ~26 mAHD at the north-eastern boundary and ~29 mAHD at the south-western. The southern carparking area was observed to be constructed so as to slope slightly towards Canterbury Road to the south. Surface water is collected on roof tops and impervious hardstand surfaces, then channelled via kerb and guttering. Surface water infrastructure was not observed within the north-western portion of the Site, however a drainage system was observed within the north-eastern portion of the Site and within the mechanics workshop. Surface water infiltration is likely to occur through areas of exposed soil within the north-western portion of the Site, as well as cracks and fractures in the hardstand.					
Nearby water bodies	Cup and Saucer Creek and the Cooks River are located approximately 640 metres and 1 kilometre to the south and north-east of the Site respectively.					
Site surface coverings	The Site is completely covered by hardstand areas in the form of the building slabs parking areas and pavements with the exception of the north-western portion of the Site adjacent to the mechanics workshop and mattress factory. Hardstand areas were observed to be in moderate to good condition throughout the Site.					
Surface soils	Areas of accessible soils are present within the north-western portion of the Site.					
Site cut and fill	Fill materials were encountered in the boreholes advanced across the Site and consist of gravelly sands, sandy clays and clays. Building materials (bricks, ceramic etc.) wo observed within fill materials. Refer to Appendix B for borehole logs.					
Buildings	The Site comprises light commercial facilities with frontage to Canterbury Road to the south, Stanley Street to the west and low density residential to the north and east. The Site is comprised of a concrete and brick warehouse style building divided into fou portions with a separate business operating in each portion.					
Manufacturing, industrial or chemical processes and infrastructure	Manufacturing of mattresses was observed to be undertaken within the warehouse building, however is not expected to result in soil impacts as operations appeared to primarily consist of stuffing and sewing of mattresses. Operation of the automobile mechanics is expected to include the handling of petroleum and waste oils. Whilst the majority of work is expected to be undertaken within the workshop, which is underlain by a concrete slab, potential for soil impacts due to leakages is possible within the adjacen north-western parking area.					
Fuel storage tanks (USTs/ASTs)	Anecdotal evidence of two large (approximately 10,000L) USTs being removed from the north-western portion of the Site was obtained during the Site inspection. Evidence o hydrocarbon contamination was also observed during the advancement of boreholes within the north-western portion of the Site.					
	A small (approximately 1.5m by 1.5 m) structure, potentially a tank, was identified during service location adjacent to the mechanics workshop western roller door.					
Dangerous goods	None observed.					
Solid waste deposition	None observed.					
Drains	A drainage system was observed within the north-eastern portion of the Site and withir the mechanics workshop.					

ltem	Observations				
Evidence of previous Site contamination investigations	None observed.				
Evidence of land contamination (staining or odours)	Odours were not recorded during the site walkover. However, during the intrusive investigation, hydrocarbon odours and staining were observed within boreholes BH2, BH3, BH4 and MW1 advanced within the north-western portion of the Site.				
Evidence of groundwater contamination	None observed.				
Groundwater use	None observed.				
Vegetation	Minor amounts of landscaped vegetation consisting of native and introduced tree, shrub and grass species were observed adjacent to the Site. The vegetation appeared to be in good condition.				
Site fencing	The northern, eastern and southern boundaries to the Site were bound by fencing, with the warehouse building directly abutting the western boundary (frontage to Stanley).				

2.3 Surrounding Land Uses

The Site is located within a primarily low density residential area. Land uses around the Site are detailed in **Table 2-3**.

Surrounding Land Use					
Land Use or Activity					
Low density residential houses are present to the north-west. An automobile brake distributor is present to the north-east.					
Low density residential housing, beyond which is an automobile panel workshop.					
Canterbury Road, beyond which are low density residential houses.					
Stanley Street, beyond which are low density residential houses and an automobile parts distributor.					

The area is serviced by public roads and access to the Site is accessible directly from Canterbury Road or Stanley Street. Public transport is available within the local area via bus and rail services. Canterbury railway station is located approximately 1.3 km to the north-east of the Site.

2.4 Topography and Drainage

The Site has an elevation of approximately 28 mAHD and is relatively flat, grading slightly down to the northeast and south within the southern car parking area. Surface water is expected to be directed via hardstand and limited drainage systems to the kerb and guttering of Canterbury Road. The stormwater drain is likely to be discharged into a regional drainage channel.

2.5 Regional Geology and Hydrogeology

The 1:100,000 Sydney Geological Map Sheet 9130 (Herbert, 1983) shows the Site is situated on the Triassic aged Wianamatta Shale formation, which is known to comprise of black to dark grey shale and laminate. These observations were confirmed during intrusive investigations at the Site, with refusal on shallow shale bedrock encountered within boreholes advanced across the Site.

Stabilised groundwater was encountered from between 1.39 and 2.08 mBGL. Based on inferred groundwater levels, regional groundwater was determined to flow in an easterly to north easterly direction towards the Cooks River.

2.5.1 Groundwater Use

A search of the NSW Office of Water database on 24 February 2017 did not identify registered bores within a 500 meter radius of the site.

2.5.2 Acid Sulfate Soils

Review of the City of Canterbury-Bankstown Local Environmental Plan (2012) does not identify the site as being within an area of known Acid Sulfate Soils. A Class 5 Acid Sulfate Soil Zone is present approximately 400 metres to the east of the Site, with a Class 2 Acid Sulfate Soil Zone present adjacent to the Cooks River. Indicators of acid sulfate soils were not observed during intrusive investigations at the Site.

2.6 Previous Reports

Cardno was provided with the following environmental reports:

- > SMEC Testing Services (2014) Preliminary Geotechnical Assessment
- > TRACE Environmental (2014) Preliminary Site Investigation

A summary of previous reports is provided in **Appendix G**, with key aspects noted below:

- > The site has been used for commercial purposes since at least 1971. This included at least two USTs which may potentially remain on Site.
- > The site has been used for automobile servicing and maintenance.

2.7 Proposed Development

Specific information regarding the proposed development was not provided at the time of the investigation however it is understood the Site is to be converted to a high density residential landuse.

3 Site Investigations

3.1 Data Quality Objectives

The Data Quality Objective (DQO) process has been used to establish a systematic planning approach to setting the type, quantity and quality of data required for making decisions based on the environmental condition of the Site. The DQO process involves the following seven steps and has been set out in **Table 3-1**.

Table 3-1 Summary of Data Quality Objectives and Indicators

	ary of Data Quality Objectives and Indicators					
DQO Step	Discussion					
Step 1: State the Problem	Current and historical activities at the site included the use of the site as a mechanic workshop, with Underground Storage Tanks (USTs) previously removed. Accordingly, the presence and extent of potential contamination onsite (if any) and potential risks to human health and the environment are unknown.					
	An intrusive investigation including sampling of soils and groundwater has not been undertaken.					
Step 2: Identify the decision /	1. Are there CoPC detectable in the soil and groundwater associated with current and historic activities at the site?					
goal of the study	i. Is there any existing data and is this data valid?					
	ii. What are the standard laboratory limits of reporting (LOR) for CoPC in the sample media being assessed?					
	2. Are there any CoPC impacts within the boundaries of the investigation above laboratory limits of reporting (LOR) for the CoPC?					
	3. Has the extent of the CoPC impacts to soil and groundwater been identified and determined?					
	4. Is the investigation approach scientifically suitable and defensible?					
	The decision statement is as follows: Based on the data available, identify whether further assessment, risk assessment or other management measures are required.					
Step 3: Identify	1. Site history					
the information inputs	2. Previous analytical data (if any).					
	3. Results of analysis undertaken as part of this DSI.					
Step 4: Define	The boundaries of the study are:					
the boundaries of the study	1. Lateral - the sampling of soil and groundwater is limited to the lateral extent of the Site as illustrated in Figure 2 in Appendix A .					
	2. Vertical – the sampling of soil and groundwater is limited to up to 7mbgl.					
	 Temporal - the temporal boundary is the current sampling between January and February 2017. 					
Step 5: Develop	The investigation program is detailed in Section 3.2, with the decision rule that if as:					
the analytical approach	1. If the laboratory quality assurance/ quality control data are within the acceptable ranges, the data will be considered suitable for use.					
	2. If the CoPC are reported above the laboratory detection limit in one or more samples, then calculation and review of the following will be used to screen the potential risk:					
	 a. 95% upper confidence limit (UCL) of the arithmetic average for that sample type, then compared against the adopted criteria. 					
	b. the standard deviation of the data is less than 50% of the adopted criteria.					
	c. the maximum concentration is less than 250% of the adopted criteria					
	3. If the CoPC are reported below the laboratory detection limit in all samples, then it will be considered that there is no evidence of a potential complete source-pathway-receptor linkage and that further assessment or risk assessment is not required.					
	The decision on the acceptance of the analytical data will be made on the basis of the Data Quality Indicators (DQI) as follows:					
	 Precision: A quantitative measure of the variability (or reproducibility) of data, measured by the calculation of Relative Percentage Differences (RPDs) for duplicate samples (i.e. measure of agreement) as follows: 					

DQO Step			Discussion
	_	a.	Field and secondary duplicates should be collected at a rate of 1 in 20 samples (NEPC, 2013).
		b.	Percentage of the mean of the measurement such as Relative Percent Difference (i.e. %RPD). The %RPD will be calculated for the field and secondary duplicate (i.e. inter and intra-laboratory analysis); and
		C.	Use of similar analytical method and instrument (e.g. for inter-laboratory assessment.
		d.	The RPDs will be assessed as acceptable if less than 30%. RPDs that exceed this range may be considered acceptable, depending on the closeness to the LOR (<20 times the LOR) or heterogeneity of the material sampled an RPD limit of 50% will be considered acceptable.
	5.	Accura follows:	cy: A quantitative measure of the closeness of reported data to the "true" value, as
		a.	Method blanks, which are analysed for the analytes targeted in the primary samples and have analytical results <lor.< td=""></lor.<>
		b.	Matrix spike and matrix spike duplicate sample sets with recoveries between 70- 130% of the recovery or as nominated by the laboratory in the laboratory QC report.
		C.	Laboratory control samples (LCS). The LCS consists of a standard reference material or a matrix of known concentration. For the purpose of assessing accuracy it is required that at least one LCS for each process batch be analysed.
	6.	represe	entativeness : The confidence (expressed qualitatively) that data are ntative of each media present on Site and the conditions encountered in the field, owing steps implemented by the laboratory and reviewed by Cardno:
		a.	Blank samples run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts.
		b.	Review of RPD values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities
		C.	The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
		d.	Rinsate samples used when sampling equipment is reused have analytical results <lor.< td=""></lor.<>
	7.	-	eteness: A measure of the amount of useable data from the data collected during work program, including:
		a.	Whether standard operating procedures (SOPs) for sampling protocols have been adhered to?
			Copies of all chain of custody (COC) documentation are reviewed and presented.
		the sta	an therefore be considered whether the proportion of "useable data" generated in data collection activities is sufficient for the purposes of assessing the problem as ted in Step 1 of the DQO process. The DQI for completeness to consider that the a is suitable for use is 95%.
	8.		rability : The confidence (expressed qualitatively) that data may be considered to valent for each sampling and analytical event.
		a.	Given that the reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to Standard Operating Procedures (SOPs) and regulator endorsed or made guidelines and standards on each data gathering activity.
		b.	In addition was the data collected by experienced Cardno field staff and were NATA accredited laboratory methodologies will be employed in the laboratory programs?
Step 6: Specify performance or acceptance criteria	Act 199 endorse	97, specifi ed by sta	th the relevant guidelines as endorsed under the <i>Contaminated Land Management</i> c limits for this project are in accordance with the appropriate guidance made or te and national regulations, appropriate indicators of data quality, and standard eld sampling and handling.
			amines the certainty of conclusive statements based on the available new site in includes the following points to quantify tolerable limits:

DQO Step	Discussion
	 A decision can be made based on a certainty assumption of 95% confidence in any giver data set. A limit on the decision error will be 5% that a conclusive statement may be a false positive or false negative.
	A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area. Decision errors may include:
	 Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the site. To address this:
	a. The SAQP outlined minimum numbers of samples proposed to be collected fror each media, as summarised in Section 3.2. As such, there may be limitations i the data if aspects of the SAQP cannot be implemented. Some examples of thi scenario include but are not limited to:
	i) Restrictions in borehole depth due to drilling refusal.
	ii) Proposed samples are not collected due to access being restricted to given location.
	 Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media. Some examples of this scenario include but are not limited to:
	 Soil samples not being obtained from groundwater wells or at the depth wher groundwater is encountered.
	 Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
	b. Field staff to follow a standard procedure when undertaking samples, includin decontamination of tools, removal of adhered soil to avoid false positives i results, collection of representative samples and use of appropriate sampl containers and preservation methods.
	 Laboratories to follow a standard procedure when preparing samples for analysi and undertaking analysis.
	 Laboratories to report quality assurance/ quality control data for comparison wit the DQIs established for the project

Step 7: Develop the plan for obtaining data. The work plan is designed to meet the project objectives in Section 1.2 and the DQOs outlined above. The work plan would be optimised based on the ground conditions encountered during the field program.

3.2 Investigation Program

3.2.1 Sampling Strategy and Methodology

The scope and method of the work is summarised in **Table 3-2**. Borehole and monitoring well locations are shown on **Figure 3** in **Appendix A**.

Table 3-2 Investigation Activity Summary					
Activity		Details			
Dates of Fi	ield Activity	Soil sampling - 17 and 18 January 2017. Groundwater sampling – 7 February 2017.			
Service Location		A DBYD enquiry was undertake on 12 December 2016 which showed several services on or near the Site. Ausgrid, Jemena, NBN Co, Sydney Water and Telstra utilities are located within, or in areas surrounding, the Site.			
		An underground services locator (Locating Services Pty Ltd) was contracted to locate and clear services in the proposed borehole areas to avoid damage. Manual excavation using a hand auger was also utilised to clear the upper metre prior to advancing boreholes with a drilling rig.			
Drilling		Drilling of boreholes was undertaken by a qualified/licensed driller with a track mounted drill rig using a direct push (undisturbed) drilling method.			

Activity	Details				
	Drilling for monitoring well installation was undertaken using solid flight augers. The drilling contractors were Matrix Drilling.				
Bores Drilled and Target Depths	Thirteen (13) boreholes were advanced on the Site (as shown in Figure 3 in Appendix A) and summarised below:				
	1. Eight (8) boreholes were drilled to a maximum depth of 3.1 mBGL,				
	Two (2) boreholes were advanced to a maximum depth of 0.5 mBGL using a hand auger				
	3. Three (3) boreholes were drilled to a maximum depth of 6.3 mBGL and converted to groundwater monitoring wells.				
Soil Logging	Soils encountered during drilling were described and logged in general accordance with the Unified Soil Classification System. Borehole logs are presented in Appendix B .				
Soil Sampling	Soil samples were collected from a Geoprobe PTFE liner (disposable Teflon tubes) or directly from the hand auger. Sampling was undertaken using nitrile gloves, with a new pair of gloves used for each sample to minimise the risk of cross-contamination.				
	The soil samples were placed into laboratory supplied sample containers. Soil samples were placed into a cooler box containing ice whilst on-site and in transit to the laboratory. Soil samples were submitted under Chain-of-Custody (CoC) procedures to NATA accredited laboratories. CoC documentation is presented in Appendix I .				
	Visual and olfactory observations coupled with PID screening of soil samples were recorded by experienced environmental scientists and documented on the borehole logs presented in Appendix B . Based on the field observations, samples were submitted for targeted suites of analysis of the contaminants of potential concern (CoPC) as summarised in Table 3-3 . The following number of samples were analysed at the laboratories:				
	• Twenty (20) primary soil samples at Eurofins Environmental.				
	 One (1) intra-laboratory duplicate soil sample at Eurofins Environmental. One (1) inter-laboratory duplicate soil sample at ALS Environmental. 				
Soil Screening	Soil samples were field screened by using a calibrated PID and noting any odours and any other olfactory signs of contamination. PID calibration records are provided in Appendix F.				
Groundwater Well Construction	Wells were installed with 50 mm, flush jointed, class 18 PVC, threaded screen and casing. Screen was installed at least 1 m above the observed water level, where possible. Bore construction details are provided in Appendix B . Sand filter pack was raised approximately 0.5 m above the top of the screen.				
	Bentonite seal was set an additional 0.5 m above the top of the sand pack. Wells were grout sealed from the bentonite seal to the surface and capped with a concrete-set, flush mounted gatic cover.				
Groundwater Sampling	Three (3) new groundwater monitoring wells (MWs) were developed, gauged and sampled.				
	<u>Well Development</u> - developed after drilling and installation using a bailer. <u>Well Gauging</u> - The Static Water Level (SWL) was measured using an interface probe prior to purging and sampling. The interface probe was decontaminated between each measurement with Decon90 and rinsed with tap and deionised water. SWLs were measured from a specified mark on the top of casing on each well, with the SWLs presented as meters below top of casing (mbtoc).				
	<u>Well Purging and Sampling</u> - The monitoring wells were purged using a disposable bailer prior to sampling. Field parameters and visual/olfactory observations were recorded prior to sampling at each location with the exception of monitoring well MW2 which did not have sufficient sample volume. Physio-chemical parameters including pH, EC, redox potential, and temperature were measured using a calibrated water quality meter. Groundwater samples were collected once field parameters stabilised. Groundwater samples were collected directly from the bailer, with a new bailer utilized for each well, and transferred to appropriately preserved sample containers provided by the laboratories. The				

Activity	Details				
	groundwater samples for metals analysis were field filtered using dedicated disposable 0.45 micron (μm) vacuum filter cups (Stericups™). Field observations and parameters are presented in Appendix I .				
	Groundwater samples were placed into a cooler box containing ice (with temperature range between 2-4°C) whilst onsite and in transit to the NATA accredited laboratories for the targeted suite of analysis. Groundwater samples were submitted under CoC procedures to Eurofins Scientific laboratory for suites of analysis of the contaminants of potential concern (CoPC) as per Section 3.2.2 below.				
	CoC documentation is presented in Appendix I.				
Decontamination Procedure	Reusable soil and groundwater sampling equipment was rinsed with Decon 90 and deionised water prior to the collection of each sample.				
Sample and Preservation and Transport	Samples were placed in laboratory supplied containers and stored on ice in a cooler box while on Site and in transit to the laboratory with accompanying CoC documentation.				
Borehole reinstatement	Boreholes which were not converted into monitoring wells were backfilled with soil removed from the bore during drilling to level the area. Concrete cores were reinstated and sealed.				
Disposal of excess soil and purged groundwater	Soil cuttings and purged groundwater were stored on site in a sealed waste drum.				

Fieldwork was undertaken by experienced environmental scientists. The records and observations made during the fieldwork are presented in the borehole logs and fieldwork records in **Appendix B** and **Appendix H**, respectively.

Tabulated summaries of laboratory results are presented in **Appendix C**. The Quality Assurance/Quality Control program is summarised in **Section 5.5**, with QA/QC documentation presented in **Appendix E**. Copies of the NATA stamped laboratory reports and chain of custody documentation are included in **Appendix I**.

Table 3-3 St	ummary of s	amples collected					
Environmental Assessment Area	Location	Rationale	Soil Boreholes	Groundwater Wells Installed	Max. Investigation Depths (m)	Sample Media	Contaminants of Potential Concern (CoPC)
Entire Site	Entire Site	Delineate and assess the presence of potential contamination associated with historical land use activities,	BH1, BH2, BH3, BH4, BH5, BH6, BH7, BH8,	MW1, MW2, MW3	6.3 mBGL	Soil	TPH, BTEXN, PAH, OCP, PCBs, Total Phenols; Heavy Metals (arsenic, cadmium, chromium, nickel, copper, zinc, lead, mercury); and Asbestos (presence / absence)
		including operation of USTs and uncontrolled filling, at the Site.	ВН9, ВН10			Groundwater	TPH; BTEXN; PAH; PCB; OCP; Heavy metals (arsenic, cadmium, chromium, nickel, copper, zinc, lead, mercury)

4 Assessment Criteria

Cardno understands the Site is proposed to be developed into a high density residential landuse with limited access to soils. The following sections define the criteria adopted, with the criteria values included in the laboratory results summary tables provided in **Appendix C**.

4.1 Soil Assessment Criteria

To determine whether contaminated soil may pose a hazard to human health or the environment, the levels of contaminants reported in the soil are generally assessed against recognised standards and guidelines. Soil assessment criteria for the Site were derived from the following guidelines:

- > National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 as varied May 2013 (the 'NEPM 2013')
- > Guidelines for Consultants Reporting on Contaminated Sites (OEH, 2011) under the provisions of the Contaminated Land Management Act 1997 (CLM Act).

In December 1999, the National Environment Protection Council (NEPC) formulated the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) in relation to investigation levels for soil and groundwater in the assessment of site contamination (NEPC 1999a). In April 2013, the amendment to NEPM was officially approved (registered on 15 May 2013) with various changes including new ecological and health investigation and screening levels included (NEPC 1999b). This is referred to from now on as "the NEPM". It includes human health and ecological investigation levels (HIL and EIL) for a range of metals, inorganic compounds and organic compounds. Screening levels (HSL and ESL) have been provided for petroleum hydrocarbons. Both the investigation levels and screening levels are applied in the same manner in that they are the upper concentrations of a contaminant above which further investigation is required.

Therefore the beneficial uses and NEPM (NEPC 1999b) assessment criteria commensurate with the site land use(s) are:

- NEPM Health Investigation/Screening Levels (HIL-B, HSL-B): Residential with minimal opportunities for soil access and home-grown produce is not grown and consumed. This category includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats.
- NEPM Management Limits for TRH fractions (Residential, parkland and public open space): Management limits where high concentrations of low toxicity hydrocarbons may be unacceptable due to the potential for formation of LNAPL, fire and explosive hazard and effects on buried infrastructure by hydrocarbons.
- NEPM Ecological Investigation / Screening Levels (EIL/ESL): to assess potential risks to terrestrial ecosystem based on the following generic land use settings:
 - Urban residential and public open space (UR / POS)

The initial screening levels for determining the "contamination status of land" are generally the most conservative of these investigation/screening levels applicable for site based on specific soil and site characteristics.

The beneficial use of land referred to as "aesthetics" may be precluded where land is considered offensive to the senses – e.g. through the presence of offensive odour or unusually coloured staining. It is therefore not possible to quantify circumstances where this protected beneficial use is precluded (it is a subjective assessment about how the average person might respond) and as such criteria for the assessment land aesthetics cannot be adopted.

"Investigation levels" or "screening levels" presented in the NEPM are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels", rather, they are levels at which further investigation or assessment should be undertaken to provide assurance that unacceptable contamination does not occur to an extent that could cause harm or detriment for users of the land. Subsequent assessment on a site-specific basis often results in higher levels being acceptable. However, since the "investigation levels" or "screening level" are generally set at conservatively low levels, they are often taken to be the acceptable levels.

4.2 Groundwater Assessment Criteria

The use and fate of the groundwater was considered in the selection of assessment criteria. As the Cooks River (which is tidal at this point in the river) is the likely receiving body of water for local groundwater and domestic users of groundwater were noted on the groundwater bore search, these beneficial uses have been used to determine the groundwater assessment criteria for the Site.

The NEPM includes groundwater investigation levels (GIL) for a range of metals, inorganic compounds and organic compounds. Health screening levels (HSL) have been provided for petroleum hydrocarbons. Both the investigation levels and screening levels are applied in the same manner in that they are the upper concentrations of a contaminant above which further investigation is required.

Therefore, the beneficial uses with the site land use(s) and NEPM assessment criteria commensurate to assess whether contaminated groundwater may pose a hazard to human health are:

- NEPM Groundwater Investigation Levels (GIL): GIL have been adopted from Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000), drinking water (NHMRC & NRMMC 2013) and managing risks from recreational waters (NHMRC 2008). The primary aim of these guidelines is to protection human and ecological health from direct exposure (including consumption) of potentially contaminated groundwater. GILs have been provided for:
 - Freshwater: Investigation levels for ecological health where groundwater is received by freshwater surface waters. These levels apply to typical slightly-moderately disturbed systems. Refer to ANZECC (2000) for guidance on applying investigation levels for ecosystem requiring a different level of protection
 - **Drinking water:** investigation levels for the protection of direct human exposure to groundwater used as a source of drinking water.
- NEPM Groundwater Health Screening Levels (HSL-B) for vapour intrusion: Residential with minimal opportunities for soil access. This category includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats.

In addition, the NEPM stipulates the following guidelines for the risk-based assessment of groundwater contamination depending on the different environmental values to be protected:

- > ANZECC 2000 (Freshwater aquatic ecosystem 95% level of species protection).
- > Australian Drinking Water Guidelines 6 Version 3.3 Updated November 2016.

Adopted groundwater assessment criteria for relevant contaminants analysed at the Site are provided in the tables in **Appendix C**.

5 **Results**

5.1 Field Observations

Ground conditions observed during the sampling program are summarised in **Table 5-1**. Detailed soil descriptions are provided in the borehole logs in **Appendix B**.

Table 5-1 Typical Soil Profile			
Generalised Subsurface Horizon	Typical Depth Range (mBGL)	Description	
Concrete	0.0 - 0.3	Concrete slab (at BH5, BH6, BH7, BH8 BH9, BH10, MW2 and MW3)	
Fill	0.0 - 3.2	Medium to coarse grey and brown gravelly sands with stiff and dry clay areas.	
	0.15 – 1.5	Soft, dry to moist brown to dark brown clays with minor sands.	
Natural soils and residual soils	0.5 - 6.3	Stiff, low to medium plastic, light brown, orange to brown clayey sands with gravels and of generally moist consistency.	

5.1.2 Groundwater Field Parameters

Groundwater field observation and parameters are summarised in Table 5-2.

It should be noted that MW2 did not have a sufficient volume of water and the physical parameters were unable to be recorded.

Table 5-2Groundwater Physical Parameters

Sample ID	Dissolved Oxygen (DO) ⁽¹⁾	Electrical Conductivity (EC) ⁽¹⁾	рН ⁽¹⁾	Redox Potential (Eh) ⁽¹⁾	Temperature ⁽¹⁾	Total Dissolved Solids (TDS) ⁽¹⁾
	mg/L	µS/cm	-	mV	⁰ C	ppm
MW1	-	3640	6.70	155	21.1	-
MW2	-	-	-	-	-	-
MW3	-	1772	7.42	240	22.0	-

5.2 Soil Field Screening Results

Soils samples were screened for total Volatile Organic Compounds (VOCs) using a photo-ionisation detector (PID). The field PID screening VOCs results are provided in the soil borehole logs in **Appendix B**.

The total VOCs concentrations measured using an in-situ PID during the course of the investigation ranged from 0.0 ppm to 21.8 ppm.

5.3 Soil Laboratory Results

The results of laboratory analysis have been compared against the adopted assessment criteria and presented in the Laboratory Summary Tables in **Appendix C**. An interpretation of this data is summarised as follows:

5.3.1 Petroleum Hydrocarbons

- > Total Petroleum Hydrocarbons / Total Recoverable (TRH)
 - TRH C₁₆-C₃₄ was reported in concentrations ranging from below reportable laboratory LOR to above the following criteria:

- NEPM 2013 ESL Urban Residential / Public Open Space (UR/POS), Fine Soil (1,300 mg/kg) at BH3/1.8 (1,900 mg/kg) and MW1/0.8 (1,700 mg/kg)
- NEPM 2013 Management Limits, R/P&POS, Coarse Soil (2,500 mg/kg) at BH4/1.5 (2,600 mg/kg)
- NEPM 2013 Management Limits, R/P&POS, Fine Soil (3,500 mg/kg) at BH4/2.5 (13,000 mg/kg)
- NEPM 2013 ESL UR/POS, Coarse Soil (300 mg/kg) at BH5/0.2 (410 mg/kg).
- All other TRH and BTEXN compounds were not detected in concentrations exceeding the adopted assessment criteria in any sample analysed.

5.3.2 Pesticides

Organochlorine pesticides were not reported in concentrations exceeding the adopted laboratory LOR in any analysed sample.

5.3.3 Polychlorinated biphenyls

Polychlorinated biphenyls were reported at concentrations below the adopted assessment criteria. Total PCBs (as a sum of total) was reported below the NEPM 2013 HIL, Residential B (1 mg/kg) criterion.

5.3.4 Metals

Metals were reported in concentrations below the adopted assessment criteria, with the following exceptions:

- Arsenic was reported in concentrations exceeding NEPM 2013 EIL UR/POS (100 mg/kg) in BH2/0.5 (350 mg/kg);
- Copper was reported in concentrations exceeding NEPM 2013 EIL UR/POS (60 mg/kg) in BH1/1.0-1.5 (88 mg/kg);
- Zinc was reported in concentrations exceeding NEPM 2013 EIL UR/POS (70 mg/kg) in multiple sampling locations, including BH1/1.0-1.5 (72 mg/kg), BH2/0.5 (240 mg/kg), BH4/1.5 (120 mg/kg), BH5/0.2 (70 mg/kg), BH6/1.2 (500 mg/kg), BH7/0.2 (130 mg/kg), BH8/0.5 (76 mg/kg), MW1/0.8 (150 mg/kg) and MW2/4.0 (500 mg/kg)
- > All other metals (cadmium, chromium (III + VI), mercury and nickel) were reported in concentrations below the adopted assessment criteria.

5.3.5 Polycyclic Aromatic Hydrocarbons/Phenols

Concentrations of PAH and phenol compounds analysed were generally less than the adopted assessment criteria, with the exception of:

Benzo(a)pyrene exceeded NEPM 2013 ESL UR/POS, Coarse Soil (0.7 mg/kg) criteria at BH6/1.2 (2.5 mg/kg), BH8/0.5 (4.3 mg/kg) and MW1/0.8 (0.7 mg/kg).

5.3.6 Asbestos

Asbestos, or respirable fibres, were not detected in the samples submitted for analysis.

Potential asbestos containing material (fibre cement sheet debris) was observed on the soil surface throughout the north-western portion of the Site.

5.4 Groundwater Laboratory Results

The results of laboratory analysis of groundwater samples have been compared against the adopted assessment criteria and presented in the Laboratory Summary in **Appendix C**. An interpretation of this data is summarised as follows:

5.4.1 Physical Parameters

Groundwater physical parameters were measured at each groundwater monitoring well when possible. Specifically:

- > Electrical conductivity ranged from 1,541 μ S/Cm (sample MW1) to 4,020 μ S/Cm (sample MW3)
- > pH ranged from acidic (4.55 in sample MW1) to neutral (7.46 in sample MW3)
- > Redox potential ranged from 141.16 mV (sample MW1) to 261.6 mV (sample MW3)
- > Temperature ranged from 20.3°C (sample MW1) to 23°C (sample MW3).

5.4.2 Metals

Dissolved Metals were reported in concentrations exceeding the adopted assessment criteria, as summarised below:

- > Dissolved copper was reported in concentrations exceeding the adopted ANZECC criteria in all analysed samples
- Dissolved nickel was reported in concentrations exceeding the adopted drinking water assessment criteria (0.02 mg/L) in sample MW1 (0.029mg/L)
- > Dissolved zinc was reported in concentrations exceeding the adopted ANZECC criteria in all analysed groundwater samples.

5.4.3 Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene

Benzene, toluene, ethylbenzene, naphthalene and xylenes were reported in concentrations below laboratory limit of reporting and the adopted assessment criteria in the analysed groundwater samples.

5.4.4 Total Recoverable Hydrocarbons

TRH constituents were reported in concentrations below the laboratory limit of reporting and the adopted assessment criteria in the analysed groundwater samples.

5.4.5 Polycyclic Aromatic Hydrocarbons

PAH compounds were generally reported below the laboratory limit of reporting and the adopted assessment criteria.

5.4.6 Pesticides and Polychlorinated Biphenyls

OCP and PCB compounds were reported below the laboratory limit of reporting and the adopted assessment criteria.

5.5 Quality Assurance / Quality Control

A quality review of the data was conducted. In summary, the data quality review did not identify significant systematic errors in the data collection process. Therefore the data set is considered to be valid, complete and can be relied upon for the purposes of this assessment. RPD values exceeding the accepted limit of 30% were identified and can be found in **Appendix C**, with further discussion on QA / QC provided in **Appendix E**.

5.6 DQO Step Completion

Table 5-3 presents an assessment of how the DQO steps have been completed or otherwise.

T F 0	~ ~ ~		
Table 5-3	Summary of	Data Quality	Objectives

DQO Step	DQO Requirement	DQO Completion
Step 1: State the Problem	Further assessment has been undertaken to determine the quality of soil and groundwater across the Site. Thirteen (13) boreholes were advanced on site, three (3) of the boreholes drilled were converted to groundwater monitoring wells to better assess the potential contamination within the Site.	Yes.
Step 2: Identify the decision / goal of the study	Contaminants of potential concern exceeded the adopted assessment criteria for soil and groundwater in some samples across the Site. The majority of soil criteria exceedances were observed within the shallow fill materials primarily around the former UST area and possible waste oil UST.	Yes
Step 3: Identify the information inputs	Previous reports were available and used in this assessment.	Yes
Step 4: Define the boundaries of the study	The contamination assessment was completed within the lateral (site boundary), vertical (shallow soils and rock to approximately 6.3 mBGL and the shallow perched water-table and the temporal boundaries stated in the DQOs.	Yes
Step 5: Develop the analytical approach	Concentrations of the potential contaminants of concern exceeding the adopted assessment criteria were reported for soil and groundwater with analytical data deemed to be precise, accurate, representative, complete and comparable.	Yes
Step 6: Specify performance or acceptance criteria	Analytical data was compared with the relevant guidelines endorsed under the <i>Contaminated Land Management Act 1997</i> as stated in Section 4 and the QAQC limits as specified in Appendix E .	Yes
Step 7: Develop the plan for obtaining data.	The field plan was optimised based on review of the previous information and current Site conditions and site observations.	Yes

6 **Discussion**

6.1 Field Screening

Review of the soil field screening for total VOCs using a PID indicates low concentrations of VOCs at all sampling locations with some hydrocarbon odours detected at BH3, BH4 and MW1 which are located in the vicinity of the former UST area.

6.2 Soil Investigation Results

Concentrations of contaminants of potential concern in soils sampled were generally less than the adopted assessment criteria.

Exceedances of the adopted criteria for TRH fractions were observed at various locations primarily around the former UST area in the north-western portion of the site and the possible UST within the mechanics workshop. There were various exceedances in longer chain TRH (C_{16} - C_{34}) in BH3/1.8 (1,900 mg/kg), BH4/1.5 (2,600 mg/kg), BH4/2.5 (13,000 mg/kg), BH5/0.2 (410 mg/kg) and MW1/0.8 (1,700 mg/kg). There is a large degree of variability in the TRH results, with some of this variability attributed to the nature of the volatility inherent with TRH fractions generally. Given the stability of these longer chain TRH fractions and thus their limited capacity for vapour intrusion, these results are only of concern where dermal and inhalation pathways may be likely, or likely in the future.

Soil concentrations of PAHs exceeding the adopted criteria *NEPM 2013 ESL UR/POS, Coarse Soil* were reported for Benzo(a)pyrene at BH6/1.2 (2.5 mg/kg), BH8/0.5 (4.3 mg/kg) and MW1/0.8 (0.7 mg/kg).

Heavy metals were detected in concentrations exceeding *NEPM 2013 EIL UR/POS, aged* with particular reference to arsenic, copper and zinc. Arsenic exceeded adopted criteria at BH2/0.5 (350 mg/kg) within identified fill material. Copper was also only exceeded the criteria at one location, BH1/1.0-1.5 (88 mg/kg) within the fill material. Zinc exceeded adopted criteria at various locations, BH1/1.0-1.5 (72 mg/kg). BH2/0.5 (240 mg/kg), BH4/1.5 (120 mg/kg), BH5/0.2 (70 mg/kg), BH6/1.2 (500 mg/kg), BH7/0.2 (130 mg/kg), BH8/0.5 (76 mg/kg), MW1/0.8 (150 mg/kg) and MW2/1.0 (500 mg/kg). As such the source for the elevated heavy metals concentrations is expected to be a function of the importation of uncontrolled fill materials and the demolition of onsite structures.

Asbestos fibres were not detected in fill or natural materials however potential asbestos containing materials (fibre cement debris) was observed on the soil surface within the north-western portion of the Site. As asbestos was not observed in building materials, there is the potential for the source to be fill material across the Site.

Given that basement carparking is proposed, it is likely that the soils impacted with petroleum hydrocarbons, metals and Potential Asbestos Containing Material (PACM) will be removed and will require classification for offsite disposal in accordance with the NSW EPA (2014) *Waste Classification Guidelines.* It is noted that the lateral and vertical extent of these impacted soils has not been fully delineated to date.

6.3 Groundwater Investigation Results

Concentrations of contaminants of potential concern in groundwater samples were generally less than the adopted assessment criteria.

Slight exceedances of the adopted ANZECC freshwater criteria for dissolved copper and zinc were observed within the three groundwater monitoring wells sampled, with an exceedances of the adopted drinking water guidelines criteria also reported for nickel in monitoring well MW1. The exceedances are likely to be representative of the surrounding urbanised setting, however elevated concentrations of metals in fill materials may also be contributing to the elevated groundwater concentrations.

6.4 Conceptual Site Model

A Conceptual Site Model (CSM) has been developed for the site to assist with the evaluation of risk of potential contaminants to the environment and human health. The CSM starts with a Conceptual Hydrogeological Model of the site to place the site in context with the groundwater environment and to identify the potential pathways for contamination migration in the sub-surface. The CSM is then developed by assessing the contaminant sources, pathways and receptors to identify the potentially active pathways of exposure or environmental impact.

The CSM development process is also used to identify data gaps, uncertainty and to define the risk assessment approach. The CSM is a blue print (a working hypothesis) for the understanding of site contamination and are updated as new information is obtained.

The CSM presented in this section is based on the findings of the Preliminary Site Investigation (PSI) and this Detailed Site Investigation (DSI), and includes soil and groundwater.

The topography surrounding the Site slopes slightly away towards the Cooks River to the north-east and has an approximate elevation of 26 mAHD. Given the proximity of Cup and Saucer Creek approximately 640 m to the East – South – East of the site, groundwater is expected to flow in this direction.

Drilling across the site encountered Fill comprised of gravely sands, sandy clays and clays with some building materials to approximately 3.2 mBGL within the north-western portion of the Site and 1.0 mBGL within the southern portion. The Fill overlies brown clays followed by black to dark grey shale and laminate at depths from 1.4 mBGL.

Shallow groundwater was present within three monitoring wells with a standing water level of approximately 2.1 mBGL, noting that some water ingress was encountered at approximately 1.38mbgl. Given the clayey soils and shallow bedrock, the groundwater encountered is expected to be perched with limited recharge.

Results of soil sampling indicate that there is the potential for localised soils in the former UST area and the waste oil UST to have been impacted by petroleum hydrocarbons and PAHs.

The infrastructure present on the Site includes several light commercial facilities including a mattress factory, a mechanics workshop with an unsealed car parking area behind, and evidence of two USTs of approximately 10,000L being removed. There is some uncertainty around how many USTs were present in the former UST area, as well as how they have been decommissioned and possibly removed.

Potentially sensitive receivers on the Site and within the surrounding area include:

- > Future users of the Site, including residents
- > Present and future construction/earthmoving workers involved in the land development and construction
- > Future maintenance workers undertaking subsurface maintenance works
- > Groundwater under the Site
- > Minor vegetation adjacent to the Site
- > Receiving water bodies (Cup and Saucer Creek and Cooks River).

Comparison of soil and groundwater analytical results to the adopted assessment criteria identified that metals (Arsenic, Copper and zinc), TRH and Benzo(a)pyrene may pose a risk, albeit low to nearby sensitive ecological receptors. Noting that concentrations in groundwater were less than the adopted assessment criteria with the exception of copper and zinc. Concentrations of nickel exceeding the drinking water guidelines criteria were also reported in sample MW1, however the groundwater is not expected to be used as a drinking water source, given the presence of piped potable water.

The transport pathways between contaminants and potentially sensitive receptors include:

- > Vertical migration of contaminants in soil down into groundwater
- > Dermal contact with impacted soils during construction, primarily excavation works for basement carparking
- > Migration of potentially impacted groundwater to ecological receptors (deep rooted vegetation) and discharge into surface water bodies.

Limited terrestrial vegetation is located adjacent to the site and includes native and introduced trees and grass species on the road verge. The nearest surface water bodies to the Site are Cup and Saucer Creek and Cooks River, located approximately 640 metres and 1 kilometre to the south and north-east of the Site respectively. The majority of the surface areas on the site are hardstand areas, however surface water infiltration is likely to occur through areas of exposed soil within the north-western portion of the site. Accordingly there is limited potential for surface water to infiltrate and assist the vertical migration of hydrocarbons and metals down into the groundwater. A hydraulic connection between groundwater underlying the Site and potentially sensitive receptors has not been established. Given the contaminant concentrations in groundwater are below or close

to the adopted assessment criteria, the risk posed to human health and the environment by impacted groundwater is considered to be low.

6.4.1 Uncertainties

Due to the businesses at the Site remaining operational at the time of the investigation, boreholes were unable to be advanced within the existing building footprint. As such there is the potential for undocumented contamination, particular impacted fill materials and impacts associated with the waste oil UST, to be present under the currently operational areas of the site.

Also there is some uncertainty around how many USTs were present in the former UST area, as well as how they have been decommissioned and possibly removed.

Given the distribution of boreholes across the site and the need to excavate for a basement carpark (if a change in land use is to proceed), it is considered that these uncertainties can be addressed as contingencies in the remediation / construction phase of the project. These contingencies would primarily relate to waste disposal classifications and volumes.

7 Conclusion

7.1 Conclusions

Cardno has completed a Detailed Site (contamination) Investigation at 453-459 Canterbury Road, Campsie, NSW. The purpose of this investigation was to assess and, where possible, delineate the extent of soil and groundwater contamination and provide the Client with advice on the suitability of the Site for the proposed future land-use.

The Site is proposed to be redeveloped to comprise several above ground storeys with one level of basement car parking requiring excavation.

During intrusive soil boring works, fill material was encountered in all locations beneath the concrete slab at depths ranging from 0.1m to 3.3 metres below ground level (mBGL). The fill consisted of dark brown sandy clay and gravely sand. The fill was overlaying soft, dry to moist brown to dark brown clays with minor sands. Low to medium plasticity clayey sands with gravel were observed between 0.5 and 6.3 mBGL. Depths to bedrock varied, with bedrock generally encountered at shallower depths within the southern portion of the Site (approximately 1.4 mBGL to 2.7 mBGL).

Shallow perched groundwater was encountered between the approximately 1.39 mBGL and 2.08 mBGL.

Concentrations of Contaminants of Potential Concern in soils and groundwater were generally less than the adopted assessment criteria, with the exception of the following,

- > TRH concentrations exceeded the adopted Ecological Screening Level ESL in boreholes BH3 and MW 1 at depths of 1.8 and 0.8 mBGL respectively. TRH in sample location BH4 exceeded management limits at depths of 1.5 mBGL and 2.5 mBGL.
- > Benzo(a)pyrene exceeded NEPM 2013 Ecological Screening Level for an Urban Residential / Public Open Space land use setting at BH6/1.2 (2.5 mg/kg), BH8/0.5 (4.3 mg/kg) and MW1/0.8 (0.7 mg/kg).
- > Elevated concentrations of arsenic, copper and zinc were reported in some samples, while all other metals remain below adopted assessment criteria. Exceedances of the adopted Ecological Investigation Levels for heavy metals were generally observed in fill materials to a depth of 1.5 mBGL.
- > Slight exceedances of the adopted ANZECC freshwater criteria for dissolved copper and zinc were observed within the three groundwater monitoring wells sampled, with an exceedance of the adopted drinking water guidelines criteria also reported for nickel in monitoring well MW1. Given the substantial distance of the site to sensitive groundwater receptors, the slightly elevated metal concentrations are unlikely to pose a risk to human health or the environment.

7.2 Recommendations

To confirm the suitability of the site for the proposed change in landuse, it is recommended that the following be undertaken during the redevelopment and prior to occupancy:

- > The lateral and vertical extent of the hydrocarbon, metal and asbestos impacted soils be delineated. The delineation assessment should consider the proposed stages of excavation and waste classification requirements for the offsite disposal of this material, if it cannot be re-used onsite.
- > A Remediation Action Plan (RAP) incorporating the further contamination assessment and building design be developed. The RAP should include an Unexpected Finds Protocol and options for spoil management. The RAP should be prepared in accordance with the Site's final and approved detail structural building envelope design plans. Options for spoil management should be developed prior to construction commencing at the Site, and in consultation with Cardno and a Licensed Asbestos contractor.
- > A soil validation assessment should be carried out at the completion of excavation and dewatering (if required) phases. This assessment could be undertaken as per the recommendations that will be provided in the RAP.

8 References

SMEC Testing Services (2014) – *Preliminary Geotechnical Assessment*, 453-459 Canterbury Road, Campsie NSW

TRACE Environmental (2014) - Preliminary Site Investigation, 453-459 Canterbury Road, Campsie NSW

453 – 459 Canterbury Road, Campsie, NSW

APPENDIX

FIGURES

CLIENT : Hailiang Pro	perty Campsie Pty Ltd	E	BOREHOL	E LOG		HOLE NO :	: BH1
PROJECT : Campsie LOCATION : 453-459	DSI Canterbury Road, Camps	ie NSW				PROJECT F	REF : 59917080 DF 1
RIG TYPE : Geoprobe		HOD : Push Tube		CONTRACT	OR : Ma		DRILLER :
DATE STARTED : 18/ LOCATION : See Dra		TED : 18/1/17	DATE LOGGE	:D : 18/1/17 L	OGGED	BY : SD	CHECKED BY : HS
DRILLING				MATERIAL		1	
METHOD GROUND WATER LEVELS SAMPLES & FIELD TESTS	RL (m) C DEPTH (m) C DEPTH (m) C LOG C LASSEFICATION SYMBOL	Soil Type, pla Ro	IATERIAL DESCRIP asticity or particle char ock Type, grain size, o indary and minor corr	acteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	STRUCTURE & Other Observations
BH1_1.0-1.5 PID =0.2		0.10m Fill, clayey SANE Fill, sandy CLAY with gravel		grey plasticity, dark brown,	M	S	
PID =0.4		1.80m	D, loose, coarse, grey LAY, stiff, low to medi	um plasticity, red, with	D M-W	L	
BH1_2.4 PID=1.6 PID=0.2	3.0	3.10m	tiff, medium plasticity,	grey with orange	D - W	St	
		Refusal at 3.1 m					
MOISTURE & GROUNDW D - Dry M - Moist W - Wet OMC - Optimum MC PL - Plastic Limit ► - Vater seepage/ii ¥ - Water level	U - Undisturbe D - Disturbed ES - Environme B - Bulk Distu	ed Sample Sample ental sample rbed Sample Penetration Test	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL L H VH	CK STRENGTH - Extremely low - Very low - Low - Medium - High - Very high - Very high - Extremely high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See Explanatory Notes details of abbreviations & basis of descriptions.	for	CARDN	O (NSW/A	CT) PTY LTI	D		017000 PH1 Pogo 1 OF 1

CLIENT :	: Hailiang P	roperty C	ampsi	e Pty L	td		BOREHOL	E LOG		HOLE I	NO:BH2	2
	T : Campsi N : 453-45		bury R	oad Ca	amns	ie NSW					CT REF : : 1 OF 1	59917080
	E : Geoprol					HOD : Push Tul	be	CONTRACTO	OR : Ma			DRILLER :
	ARTED : 1				MPLE	TED : 18/1/17	DATE LOGGE	ED : 18/1/17 LO	OGGED	BY : SD	(CHECKED BY : HS
LOOATIO	DRILLIN		locati					MATERIAL				
METHOD GROUND WATER	LEVELS SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP blasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	& C	STRUCTURE ther Observations
			0.0	000		<u> </u>	AND, loose, coarse, gre se, coarse, red brown, v		D	L		
	BH2_0.5 PID= 0.3		-	08		0.80m			D	L		
	PID = 0.3		- 1.0 —	08		1.00m	AY, firm, medium plastic use, coarse, light brown,		D	F		
	PID = 0.2		-	08					D	L		
	2.00m PID = 0.3		- 2.0 — -			1.80m Fill, CLAY, sof 2.20m	t, medium plasticity, bro	wn with red mottle	M - W	s		
				000		Natural, CLAY gravel	, firm, low to medium pla	asticity, orange, with	M - W	F		
	BH2_2.4 PID = 0.2		3.0	00		3.10m Refusal at 3.1	m					
			4.0									
			- 5.0 — - - - - -									
			- - 6.0 — - -									
MOISTUR D - C M - N W - V OMC - C PL - F ► - V See Expla details of a & basis of												
			1									
D - E M - M W - V OMC - C PL - F	M - Móist D - Disturbed Sample W - Wet ES - Environmental sample OMC - Optimum MC B - Bulk Disturbed Sample PL - Plastic Limit B - Bulk Disturbed Sample ▶ - Water seepage/inflow SPT - Standard Penetration Test						CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STRENGTI - Extremely I - Very low - Low - Medium - High - Very high - Extremely I	ow F) [S	Residual soil RS - Residual soil KW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered R - Fresh rock
See Expla details of & basis of	anatory Note abbreviation descriptions	s	•			CARD	NO (NSW/A	.CT) PTY LTI)		I	

CLIENT : Haili	iang Property Ca	ampsie	Pty Ltd		BOREHOL	E LOG		нс	DLE NO : I	BH3
PROJECT : C LOCATION : 4	Campsie DSI 453-459 Cantert	oury Roa	ad, Camps	ie NSW					EET : 1 OF	EF : 59917080
RIG TYPE : G	eoprobe 7822D	Т	MET	HOD : Push Tub		CONTRACT			-	DRILLER :
DATE STARTE	ED: 18/1/17 See Drawing for			TED : 18/1/17	DATE LOGGE	ED : 18/1/17 L	OGGED	BY : S	D	CHECKED BY : HS
DF	RILLING					MATERIAL				
METHOD GROUND WATER LEVELS	SAMPLES & FIELD TESTS RL (m)	_	GRAPHIC LOG CLASSIFICATION SYMBOL		MATERIAL DESCRIP blasticity or particle chai Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
PID:	= 0.5				ND, loose, coarse, grey se, coarse, dark brown,		D	L		
PID	=0.3 = 21.8 =10.0			1.60m	f, low plasticity, dark bro t, medium to high plastic		м	St		ocarbon odour rocarbon odour
BH3 PID:	3_1.8 =1.5	2.0		2.00m	, soft, medium plasticity	·	м	S		
				2.80m Natural CLAY	, firm, low plasticity, red		м	s	Slight hy	drocarbon odour
BH3 PID:	3_3.0 =0.3	3.0		3.30m	, stiff, low to medium pl	asticity, grey	D	F		
		4.0		4.10m Refusal at 4.1	m		D	St		
		- - - - - - - - - - - - - - - - - - -								
		6.0								
MOISTURE & G D - Dry M - Moist W - Wet OMC - Optimuu PL - Plastic I Mater s Y - Water s	m MC Limit seepage/inflow	U D ES B SPT		ed Sample Sample ental sample	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	- Extre - Very - Low - Mediu - High - Very - Extre	mely low low um	ROCK WEATHERING RS - Residual soil XW - Extremely weather DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See Explanator details of abbre & basis of desci	viations			CARD	NO (NSW/A	.CT) PTY LTI	D			

CLIENT : Hailiang Property C		BOREHOLE LOO	G	HOLE NO :	BH4				
PROJECT : Campsie DSI LOCATION : 453-459 Canter	bury Road, Campsie NSW			PROJECT R SHEET : 1 O	REF : 59917080 F 1				
RIG TYPE : Geoprobe 7822D		e (CONTRACTOR : M		DRILLER :				
DATE STARTED : 18/1/17 LOCATION : See Drawing for	DATE COMPLETED : 18/1/17	DATE LOGGED : 18/	1/17 LOGGED	BY : SD	CHECKED BY : HS				
DRILLING			MATERIAL						
METHOD GROUND WATER LEVELS SAMPLES & FIELD TESTS RL (m)	GRAI DEPT	MATERIAL DESCRIPTION Jasticity or particle characteristic, o Rock Type, grain size, colour condary and minor components	MOISTURE / WOISTURE / WOISTURE /	CONSISTENCY / REL DENSITY / ROCK STRENGTH	STRUCTURE & Other Observations				
	0.10m Fill, gravelly S/	AND, loose, coarse, grey AND, loose, coarse, dark brown, wit	b gravel	L					
BH5_1.5	1.0 5 00 1.00m Fill, sandy CL/	λΥ, very soft, low plasticity, dark bro	wn	Hydroc	arbon odour				
BH4_1.6 PID= 8.3	2.20m Fill, sandy CL/ with gravel 2.60m	AY, very soft, low plasticity, dark bro	own, D - M	VS Strong	hydrocarbon odour				
	3.0 Refusal at 2.9	m							
	6.0								
MOISTURE & GROUNDWATER D - M - Moist Wet OMC - OMC - PL - Plastic Limit ► - Water seepage/inflow ¥ - Water level	SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	VS - Very Soft VL - V S - Soft L - I F - Firm MD - I St - Stiff D - I	Very Loose EL Loose VL Medium Dense L Dense H Very Dense VH	bose EL Extremely low RS - Residual soil VL Very low XW - Extremely weathered h Dense L - Low DW DW Distinctly weathered M - Medium SW - Slightly weathered H - High SW - Slightly weathered					
See Explanatory Notes for details of abbreviations & basis of descriptions.	CARD	NO (NSW/ACT) F	PTY LTD		017080 BH4 Page 1 OE				

		Hailiang F : Camps		Campsi	e Pty L	td		BOREHOL	E LOG			DLE NO :	BH5 EF : 59917080
		: 453-4		rbury R	load, C	amps	ie NSW				SF	IEET : 1 OF	1
	YPE		0/4/47	DA	TE OO		HOD : Hand Aug	<u>-</u>	CONTRACTO				DRILLER :
		RTED: 1 : See D				VIPLE	TED : 18/1/17	DATE LOGGE	ED : 18/1/17 LC	JGGEL) BY : 8	50	CHECKED BY : HS
		DRILLIN							MATERIAL	1			
МЕТНОD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	- 0.0 DEPTH (m) 1	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
_		BH5_0.2		- - - - - - -			0.13m Concrete Slab Fill, gravelly S 0.50m Refusal at 0.5	ILT, loose, coarse, with o	clay/	-	L	Bricks	
				1.0— - - - - - -									
				2.0 — - - - - - - -									
				- - - 4.0 - - - -									
10.0.000													
17080.GPJ 15/03/2017 11.22													
OG CAMPSIE BH LUGS 389				- - - - - - - - - - - - - - - - - - -									
	M - Moist W - Wet OMC - Optimum MC PL - Plastic Limit ► - Water seepage/inflow D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test							CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	- Very - Low - Medi - High I - Very	emely low low um	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW Slightly weathered FR - Fresh rock
See E details & bas	s of ab	atory Note breviation escription	IS				CARD	NO (NSW/A	CT) PTY LTE)			17080 BH5 Page 1 OF 1

		Hailiang F		Campsi	ie Pty L	td		BOREHOL	E LOG			DLE NO :	
		: Camps : 453-4		bury F	Road, C	amps	sie NSW					EET : 1 OF	EF : 59917080
		: Geopro					THOD : Push Tub		CONTRACTO				DRILLER :
		RTED : 1 : See D				MPLE	ETED : 17/1/17	DATE LOGGE	ED : 17/1/17 LC	GGED	BY : P	'N	CHECKED BY : SD
2004		DRILLIN	-						MATERIAL				
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	(m)	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Type, _I Se	MATERIAL DESCRIP blasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
		PID=0.2			000		0.13m Concrete Slab	arse, loose, dark brown,	with gravel	м	L		
		PID=0.0		-		, 		n, medium plasticity, bro	wn, with gravel and sand	D	F		
		PID=0.0 BH6_1.2		1.0-	000		Fill, CLAY, ver 1.20m	y soft, medium plasticity f, low, dark brown to bla		w	VS		
					08					D	St		
		BH6_1.8		2.0			1.80m Fill, CLAY, fim	n, medium plasticity, bro	own with red motttle	D	F		
				-			\mottle	, stiff, low plasticity, ora	nge with red and grey	D	St		
					-								
				- - - - - - - - - - - - - - - - - - -									
				- - - 5.0 - - - -									
				- - - 6.0 — - - -									
					- - -								
MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS D - Dry U - Undisturbed Sample M - Moist D - Disturbed Sample W - Wet ES - Environmental sample OMC - Optimum MC B - Bulk Disturbed Sample PL - Plastic Limit SPT - Standard Penetration Test Image: Imag						listurb urbed ironm CDistundard	ed Sample Sample ental sample Irbed Sample Penetration Test	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STRE - Extrei - Very I - Low - Mediu - High - Very I - Extrei	mely low low ım high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
details	s of ab	atory Note breviation escription	IS				CARD	NO (NSW/A	CT) PTY LTD)			17090 PH6 Page 1 OF

	ыт · I	-lailiang F	Property C	ampe	io Dtv I	łd		BOREHOL	E LOG		ЦС	DLE NO :	PU0
PROJ	IECT	: Camps	ie DSI		-						PR		EF : 59917080
		: 453-45 : Geopro		-			HOD : Push Tub	e	CONTRACTO	DR:M			DRILLER :
		RTED:1 :See D				MPLE	TED : 17/1/17	DATE LOGGE	ED : 17/1/17 LC	GGED	BY : S	D	CHECKED BY : HS
LUCA	TION	DRILLIN	<u> </u>	TIOCAL					MATERIAL				
МЕТНОD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle chan Rock Type, grain size, o condary and minor corr	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
		BH8_0.5 PID= 0.0		- 0.0 - - - - - - - - - - -			Concrete slab 0.20m Natural, sandy sand		ty, brown, with gravel and	D	F		
		PID= 0.0		1.0 — - -			1.40m	r, soft, medium plasticity,		м	S		
		BH8_1.6 PID= 0.0		-	<i>[]]]</i>		1.60m	, very soft, high plasticity	y, grey	w	VS	Weathered b	pedrock
		PID= 0.0		- - 2.0 - - -	-		Borehole BH8	terminated at 1.60 m				weathered	JEUIOUK
				4.0									
				5.0 - - - - - - - - - - - - - - - - -									
				6.0									
	M - Moist D - Disturbed Sample W - Wet ES - Environmental sample OMC - Optimum MC B - Bulk Disturbed Sample PL - Plastic Limit SPT - Standard Penetration Test					ed Sample Sample ental sample rbed Sample Penetration Test	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STRE - Extre - Very I - Low - Mediu - High - Very I - Extre	mely low low ım high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock	
See E details & bas	s of ab	atory Note breviation escriptions	S				CARD	NO (NSW/A	CT) PTY LTE)			17080 PH8 Page 1 OF 1

	лт·п	-lailiang F	Pronerty (amnsi	e Ptv I	td		BOREHOL	E LOG		но	LE NO :	BH9
PROJ	IECT	: Camps : 453-4	ie DSI	•							PR		EF : 59917080
		: Geopro			uau, u		THOD : Push Tub	e	CONTRACTO	DR: ^M			DRILLER :
		RTED:1 :See D				MPLE	TED : 17/1/17	DATE LOGGE	ED : 17/1/17 LC	OGGED	BY : P	N	CHECKED BY : SD
LOOP		DRILLIN		i iocati					MATERIAL				
МЕТНОD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
		BH9_1.0 PID=0.5		- 0.0 - - - - - -	1000 00 00 00		0.15m Concrete slab Natural, silty C		dark brown, with gravel	M	S		
		BH9_1.3 PID=0.1					1.00m Natural, CLAY 1.40m Refusal at 1.4	r, firm, low plasticity, broom	wn	D	F		
				- - - 2.0 - - -									
				- - - 6.0 - - - - -									
				- - - - 7.0									
D M W	M - Moist D - Disturbed Sample W - Wet ES - Environmental sample OMC - Optimum MC B - Bulk Disturbed Sample PL - Plastic Limit SPT - Standard Penetration Test					ed Sample Sample ental sample rbed Sample Penetration Test	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STRE - Extrer - Very I - Low - Mediu - High - Very I - Extrer	nely low ow m nigh	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock	
See E details & bas	s of ab	atory Note breviatior escription	IS				CARDI	NO (NSW/A	.CT) PTY LTE)			17080 BH9, Page 1 OF

		Hailiang F		Camps	ie Pty L	td		BOREHOL	E LOG		HOLI	E NO :	BH10
		: Camps : 453-45		rburv F	Road, Ca	amps	ie NSW					JECT RE T : 1 OF	EF : 59917080
		: Geopro			, -		THOD : Push Tub		CONTRACTO	DR:Ma	atrix Drillin	g	DRILLER :
		RTED : 1 : See D				MPLE	ETED : 17/1/17	DATE LOGGE	ED : 17/1/17 LC	OGGED	BY : PN		CHECKED BY : SD
LOOA		DRILLIN							MATERIAL				
МЕТНОD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP blasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
				- 0.0 -	P 6 4 9 4 4 9 4 4		Concrete slab 0.20m						
		PID= 0.0 PID= 0.0		-			Fill, silty CLAY	se, coarse, yellow, with , soft, low plasticity, dar		D	L S		
				-			0.50m_charcoal Natural, CLAY	, firm, low plasticity, gre	/	D	F		
				- - - - - - - - - - - - - -			<u>0.80m</u> Natrual, CLAY	, firm, low plasticity, red	with grey mottle	D	F		
				2.0-			1.80m Natural, CLAY sand 2.10m Refusal at 2.1	, firm, low plasticity, bro	wn with red mottle, with	D	F		
				4.0									
				- - 5.0 —	-								
				- - - -	-								
				6.0 — - - -	- - - - -								
				- - - 7.0	-								
D - Dry U - Undisturbed Sample VS M - Moist D - Disturbed Sample S W - Wet ES - Environmental sample F OMC - Optimum MC B - Bulk Disturbed Sample St PL - Plastic Limit B SPT Standard Penetration Test VS						ed Sample Sample ental sample Irbed Sample Penetration Test		RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STRENG - Extreme - Very low - Low - Medium - High - Very hig - Extreme	ly low h	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock	
details	of ab	atory Note breviation escriptions	S				CARD	NO (NSW/A	CT) PTY LTC)			7000 DU40, Done, 4, OF

	NT : I	-lailiang F	Property C	ampsi	e Ptv L	td		BOREHOL	E LOG		но	LE NO:	MW1
PROJ	ECT	: Camps			-						PR		EF : 59917080
			be 7822D		.0au, 0		HOD : Push Tub	be	CONTRACT	OR: ^{Ma}			DRILLER :
L		RTED: 1				MPLE	TED : 18/1/17	DATE LOGGE	ED : 18/1/17 LO	OGGED	BY : S	D	CHECKED BY : HS
LUCA	TION	DRILLIN	rawing for IG	Tiocat					MATERIAL				
МЕТНОD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle cha Rock Type, grain size, econdary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
		PID =0.3		- 0.0	000			AND, loose, coarse grair AND, loose, coarse grair		D	L		
		PID =0.3 MW1_1.0 PID=1.5					Fill, sandy CL	AY, soft, medium plastic	ty, dark brown,			Hydroca	arbon odour
		MW1_1.0 PID= 0.3								м	VS		
							<u>3.20m</u> Natural, CLA`	Y, soft, medium plasticity	, light brown				
		MW1_4.0 PID=3.5					4.20m Natural, CLAY	∕, soft, medium plasticity	red	D	S		
							5.00m			D	s		
				5.0			NAtural, CLA	/, firm, low plasticity , red	brown	D	F		
				- - - - - 7.0 —				1 terminated at 6.30 m					
D M W	M - Moist D - Disturbed Sample W - Wet ES - Environmental sample DMC - Optimum MC PL - Plastic Limit ► - Water seepage/inflow SPT - Standard Penetration Test				CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	CK STREI - Extrer - Very k - Low - Mediu - High - Very h - Extrer	nely low ow m iigh	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock			
details	s of ab	atory Note breviation escriptions	IS				CARDI	NO (NSW/A	.CT) PTY LTI	D			7080 MW/1 Page 1 OF

	г. ц	Joiliona D)roporty (`omno	io Dhula	łd		BOREHOL	E LOG		ц,		MIA/2
PROJE	СТ	lailiang P Campsi	ie DSI		-						PF		EF : 59917080
		: 453-45 : Geopro		-	Road, Ca		sie NSW THOD: Push Tul	be	CONTRACTO	R : M		IEET : 1 OF	DRILLER :
		RTED : 1				MPLE	ETED : 17/1/17	DATE LOGGE	ED : 17/1/17 LC	GGED	BY : \$	SD	CHECKED BY : HS
LOCAT	ION	: See D		r locat	ion				MATERIAL				
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle cha Rock Type, grain size, condary and minor com	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
		PID=0.0		- 0.0	P 00 00 1			w Plasticity , yellow brow AND, loose, low plasticity			L		
		PID=0.0			0.00		Fill, CLAY, fim	n, medium plasticity, bro	wn, with sand and gravel	D	F		
		PID=0.0		- 1.0 — - -			1.00m Natural, sandy	/ CLAY, firm, low to med	ium plasticity, dark brown			-	
							2.00m			М	F		
		PID=0.1		2.0-	000			ζ, stiff , medium plasticity	, brown, with gravel			-	
				3.0 — 	000					М	St		
				- - 4.0	000		4.00m Natural, CLAY	΄, very loose , light browr		D	VL	-	
				-			4.50m Refusal at 4.5	m			VL	Weathered E	Bedrock
				- - 5.0 —	-								
					-								
				6.0 — - -	-								
1													
I D M W OMC PL	- Dry - Moi - We - Opt - Plas - Wa			U D ES B	- Unc - Dist - Env - Bull T - Star	listurb urbed ironm c Distu ndard	D TESTS ed Sample Sample ental sample rrbed Sample Penetration Test ket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense	EL VL M H VH	 Very Low Medi High Very 	emely low low ium	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See Ex details & basis	of abl	atory Note breviation escriptions	S	<u> </u>			CARDI	NO (NSW/A	.CT) PTY LTC)			

	: Hailiang F	Property C	amnsi	e Ptv I t	'n		BOREHOL	E LOG		н	OLE NO :	MW3
PROJEC	T : Camps	ie DSI		-						P	ROJECT RE	EF : 59917080
	DN : 453-4		-			NSW)e	CONTRA	CTOR :		HEET : 1 OF	DRILLER :
	ARTED : 1			TE CON	//PLET	ED: 18/1/17	DATE LOGGE			DBY:	-	CHECKED BY : HS
LOCATIC	DN : See D DRILLIN	-	r locati	on				MATERIA	Δ1			
TER			Ê	0	NOI					GTH C		
METHOD	LEVELS SAMPLES & FIELD TESTS	RL (m)	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIP plasticity or particle cha Rock Type, grain size, condary and minor con	racteristic, colour colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH		STRUCTURE & Other Observations
			-	8 8 4	0.	10m Concrete Slab Fill, gravelly S.) AND, loose, coarse, dar	k brown to black			Bricks/ buildi	ing rubble
	MW3_0.8			·////	1.	50m Natural CLAX	[/] , soft, light brown		D	L	Weathered B	Bedrock
						Natural, CLAT	, sort, light brown					
	MW3_3.0								D	S		
			4.0		5.	40m.						
						Refusal at 5.9	m					
MOISTUR D - C M - T W - T OMC - C PL - F PL - F See Expla details of & basis of			- - - 7.0									
MOISTUR D - [M - 1 W - V OMC - 0 PL - 8 ► - V	M - Moist D - Disturbed Sample W - Wet ES - Environmental sample OMC - Optimum MC B - Bulk Disturbed Sample PL - Plastic Limit B - Standard Penetration ▶ - Water seepage/inflow SPT - Standard Penetration						CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DENSIT VL - Very Loose L - Loose MD - Medium De D - Dense VD - Very Dense	nse L N e V	1 - Med I - High 'H - Very	emely low low ium	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See Expla details of & basis of	anatory Note abbreviatior f description	IS				CARD	NO (NSW/A	CT) PTY L	TD			7000 MM/2 Dama 4 OF

APPENDIX

LABORATORY SUMMARY TABLES

							Field I Sample Cod	 D 001 D BH1_1.0-1.5 e S17-Ja09853 	001 BH1_2.4 S17-Ja09854	001 BH10_1.8 S17-Ja09861	001 BH2_0.5 S17-Ja09855	001 BH2_2.4 S17-Ja09856		_		BH4_2.5	BH5_0.2	_	_	BH7_0.2	BH8_0.5 E	_	_	/W1_4.0	001 MW2_1.0 S17-Ja09866	001 MW2_4.5 S17-Ja09867		QA1 (001 QA2 ES1701520001			
			ageu	UR/PUS, Coarse Soli	NEPM 2013 HIL, Resident Residential B Vapour In	trusion, Clay	Sample Dept NEPM 2013 Management Limits, R/P&POS, Coarse Soi		2.4	1.8	0.5	2.4	1.8	3	1.5	2.5	0.2	1.2 1	1.8	0.2	0.5 1	1	0.8 4	1	1	4.5	0.8	0.8 0	0.8	Statistical Summar		
	Toluene r Ethylbenzene r	LOR mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.2	0-2m	0-2m 50 85 70	0-1m 1-2n 0.7 1 480 NL NL NL	n 2-4m >4m 2 3 NL NL NL NL		<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.1 <0.2	<0.5 <0.5	<0.2 < <0.5 < <0.5 <	verage 0.2 0.5 0.5 0.5	Standard D D D D D
TRH	Xylene (o)rXylene TotalrTotal BTEXrC6 - C9r	mg/kg 0.1 mg/kg 0.3 mg/kg 0.2 mg/kg 20 mg/kg 20		105 120	110 310	NL NL	700 1000	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 29	<0.1 <0.3 - 20 190	<0.1 <0.3 - <20 20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20	<0.1 <0.3 - <20 <20		<0.5 <	0.5 0.5 0.2 0	2
	C15 - C28 r C29-C36 r +C10 - C36 (Sum of total) r C6-C10 r	mg/kg 50 mg/kg 50 mg/kg 50 mg/kg 20					700	<50 <50 <50 <20	<50 <50 <50 <20	<50 <50 <50 <20	<50 <50 <50 <20	<50 <50 <50 <20	1100 1100 2200 <20	70 50 120 <20	1600 1500 3129 <20	7900 7200 15,290 31	310 170 500 <20	96 <50 96 <20	<50 <50 <50 <20	100 <50 100 <20	200 <50 200 <20	56 <50 56 <20	1000 960 1960 <20	220 190 430 <20	77 <50 77 <20	<50 <50 <50 <20	89 <50 89 <20	66 <50 66 <20	<100 <100 <50 <10	7200 5	06 44	1681 1540 3274 3
	C16-C34 r C34-C40 r C10 - C40 (Sum of total) r	mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 50 mg/kg 20		120 300 2800 180		150 290	1000 2500 10000	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 1900 680 - <20	<50 <100 <100 - <20	<50 2600 900 - <20	240 13,000 4700 - 31	<50 410 <100 - <20	<50 120 <100 - <20	<50 <100 <100 - <20	<50 110 <100 - <20	<50 190 <100 - <20	<50 <100 <100 - <20	<50 1700 600 - <20	<50 350 110 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 - <20	<50 <100 <100 <50 <10			41 2772 987 3
РАН	Benzo(b+j)fluoranthene r Acenaphthene r Acenaphthylene r	mg/kg 50 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5				NL NL		<pre><50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	240 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 3.1 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<50 4.9 <0.5 1.2 2.1	<50 <0.5 <0.5 <0.5 <0.5	<50 0.7 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<50 0.8 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<50 <0.5 <0.5 <0.5 <0.5	<0.5 <	9 .84 0.5 .5 .6	1).2).3
	Benz(a)anthracenerBaP TEQ (zero)rBenzo(a) pyrenerBenzo(a)Pyrene TEQ (half LOR)r	mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5		0.7	4 (1)			<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	2.4 3.5 2.5 -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	4.9 6.8 4.3 -	<0.5 <0.5 <0.5 - -	0.5 0.9 0.7 - -	<0.5 <0.5 <0.5 -	0.8 0.8 0.6 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 - -	<0.5 <0.5 <0.5 0.6 1.2	4.9 0 6.8 1 4.3 0 0.6 1 1.2 1	.8	.5
	Benzo(a)pyrene TEQ (medium bound)*rBenzo(a)pyrene TEQ (upper bound)*rBenzo(g,h,i)perylenerBenzo(k)fluoranthener	mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5						0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	3.7 4 2.6 2.1 2.1	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	6.8 6.8 3 3.7 4.1	0.6 1.2 <0.5 <0.5 <0.5	1.2 1.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	1.1 1.4 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	0.6 1.2 <0.5 <0.5 <0.5	- - <0.5 <0.5 <0.5	6.8 1 6.8 1 3 0 3.7 0 4.1 0	.1 .6 .7 .7 .8	1.5 1.3 0.7 0.8 0.8
	Dibenz(a,h)anthracenerFluoranthenerFluorenerIndeno(1,2,3-c,d)pyrener	mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5	170		5 NL	NL NL		<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 - 0.8	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 0.7 0.7 <0.5 <0.5 - 1.7	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 4 <0.5 1.8 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.8 12 <0.5 2.7 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 1.2 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 1.1 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.8 0 12 1 0.7 0 2.7 0 1.7 0	.5 .3 .5 .7 .5	. <u>1</u> .5).5).1
	PAHs (Sum of total)rPhenanthrenerPyrenerFA- Commentr	mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 Comment Comment			400			<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	0.8 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	5.7 1.4 1.2 1 1	<0.5 <0.5 <0.5 1 1	25.9 1.2 4.1 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	61.8 8.1 10 1 1	<0.5 <0.5 <0.5 1 1	6.8 0.9 1.4 1 1	<0.5 <0.5 <0.5 1 1	6.4 0.8 1.1 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	<0.5 <0.5 <0.5 1 1	- <0.5 <0.5 - -	61.858.111011111	.5	4 .6 1))
Metals	Arsenic r Cadmium r	g (Y/N) mg/kg 2 mg/kg 0.4 mg/kg 5	100		500 150			32 N 19 <0.4 16	60 N 8.9 <0.4 9.5	40 N <2 <0.4 5.9	49 N 350 <0.4 8.9	89 N 13 <0.4 46	33 N 9.4 <0.4 30	40 N 15 <0.4 53	45 N 32 <0.4 24	46 N 6.2 <0.4 21	14 N 6.4 <0.4 6.7	35 N 14 0.7 33	131 N 9.6 <0.4 26	24 N 8.2 <0.4 23	78 N 6.4 <0.4 16	34 N 11 <0.4 26	33 N 11 <0.4	36 N 13 <0.4 11	95 N 5.3 <0.4 13	45 N 11 <0.4 7.4	30 N 8.9 <0.4 6.9	63 N 10 <0.4 7.6	- - 8 <1 6	131 5 0 2 350 2 <1	0 6 1 9	8 '3).1 13
	CopperrLeadrMercuryrNickelr	mg/kg 5 mg/kg 5 mg/kg 0.1 mg/kg 5 mg/kg 5	60 1100 30 70		30000 1200 120 1200 60000			88 32 <0.1 6.6 72	11 15 <0.1 <5 <5	6.2 15 <0.1 <5 <5	45 63 0.7 8.6 240	7 27 <0.1 <5 6.7	9.2 31 <0.1 5.6 6.4	6.2 29 <0.1 <5 9.3	33 220 <0.1 <5 120	21 170 <0.1 6.1 270	37 24 <0.1 12 70	26 240 <0.1 9.1 500	<5 20 <0.1 <5 <5	11 160 <0.1 <5 130	13 180 <0.1 <5 76	5.4 25 <0.1 <5 5.8	33 110 0.2 6.4 150	33 25 <0.1 <5 20	48 300 0.9 5.1 500	19 430 0.1 5.2 350	22 71 <0.1 16 55	28 87 <0.1 15 68	22 61 <0.1 12 60		4 06 .2 .2 24	9 11).2).5 154
	2,4-dimethylphenolr2-methylphenolr2-nitrophenolr3-&4-methylphenolr	mg/kg 0.5 mg/kg 0.2 mg/kg 1 mg/kg 0.4						<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4 <1	<0.5 <0.2 <1 <0.4	<0.5 <0.5 <0.5 <1 <0.5			D D.1 D.11 D.13 D.11
Halogenated Phenols	Phenolr2,4,5-trichlorophenolr2,4,6-trichlorophenolr2,4-dichlorophenolr	mg/kg 1 mg/kg 0.5 mg/kg 1 mg/kg 1 mg/kg 0.5			45000			<1 <0.5 <1 <1 <0.5	<1 <0.5 <1 <1 <1 <0.5	<1 <0.5 <1 <1 <1 <0.5	<1 <0.5 <1 <1 <0.5	<pre><1 </pre> <0.5 <1 <1 <1 <0.5	<1 <0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<1 <0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5 <0.5	<0.5 <1 <1 <0.5 <0.5	<0.5 <1 <1 <0.5 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5	<0.5 <1 <1 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	10.5	0.5 1 1 0.5	0 0.11 0.11 0.11
Organochlorine Pesticides	2-chlorophenolrPentachlorophenolr4,4-DDEra-BHCr	mg/kg 0.5 mg/kg 0.5 mg/kg 1 mg/kg 0.05 mg/kg 0.05			130			<0.5 <1 <0.05 <0.05 <0.05	<pre></pre>	<0.5 <1 <0.05 <0.05 <0.05	<0.5 <1 <0.05 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	- 1.8 <1 <0.05 <0.05 	- <0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	- <0.5 <1 <0.05 <0.05	<0.5 <1 <0.05 <0.05	<0.5 <0.5 <2 <0.05 <0.05	1.8 0 <2	0.5 .6 2 0.05 0.05	. <u>3</u>)))
	Aldrin + Dieldrinrb-BHCrchlordanerChlordane (cis)r	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.1 mg/kg 0.05			10 90 90			<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 - <0.05 <0.1 -	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 < <0.05 < <0.05 < <0.1 < <0.05 <	0.05 0.05 0.05 0.1 0.05)
	d-BHC r DDD r DDT r	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	180		600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			<0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	- <0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 <0.2 <0.05	<0.05 < <0.05 < <0.2 < <0.05 <	0.05 0.05 0.05 0.2 0.05)
	EndosulfanrEndosulfan IrEndosulfan IIrEndosulfan sulphater	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05			400			<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05	<0.05 - <0.05 <0.05 <0.05		<0.05 < <0.05 < <0.05 < <0.05 <	0.05 0.05 0.05 0.05 0.05 0.05)
	EndrinrEndrin aldehyderEndrin ketonerg-BHC (Lindane)r	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05						<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 < <0.05 < <0.05 < <0.05 <	0.05 0.05 0.05 0.05 0.05	· · · · · · · · · · · · · · · · · · ·
Polychlorinated Biphenyls	HexachlorobenzenerMethoxychlorrToxaphenerArochlor 1016r	mg/kg 0.05 mg/kg 0.2 mg/kg 1 mg/kg 0.5			15 500 30			<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05 <0.05 <0.2 <1 <0.5	<0.05	<0.05 < <0.2 < <1 < <0.5 <	0.05 0.05 0.2 1 0.5))
	Arochlor 1232rArochlor 1242rArochlor 1248rArochlor 1254r	mg/kg 0.1 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5						<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	<0.1 <0.5 <0.5 <0.5 <0.5	- - - - -	<0.5 < <0.5 < <0.5 <	0.1 0.5 0.5 0.5 0.5	· ·))
	Arochlor 1260 r	mg/kg 0.5 mg/kg 0.5			1			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	- <0.1	<0.5 <	0.5)

Table 1 ANALYTICAL SOIL SUMMARY TABLE PROJECT (59917080)

_			
	Statistical Summ	ary	
	Maximum	Average	Standard
_	<0.2	<0.2	0
_	<0.5 <0.5	<0.5 <0.5	0 0
_	<0.5	<0.5	0
_	<0.5	<0.5	0
	<0.5	<0.5	0
	<0.2	<0.2	
_	20	20	2
_	190 7900	30 606	36 1681
_	7900	544	1540
_	15290	1123	3274
	31	20	3
	240	59	41
	13000	985	2772
_	4700	395	987
_	<50 31	20	3
_	240	59	41
	4.9	0.84	1
	<0.5	<0.5	0
_	1.2	0.5	0.2
	2.1	0.6	0.3
_	4.9 6.8	0.8 1	1 1.5
_	4.3	0.8	0.9
	0.6		
	1.2		
_	6.8	1.1	1.5
_	6.8	1.6	1.3
_	3 3.7	0.7 0.7	0.7 0.8
	4.1	0.8	0.8
	0.8	0.5	0.1
	12	1.3	2.5
	0.7	0.5	0
	2.7	0.7	0.5
_	1.7 61.8	0.5 5.5	0.1 14
_	8.1	1	1.6
	10	1.2	2.1
	1	1	0
_	1	1	0
	131	50	28
_	0 350	26	73
_	<1	<1	0.1
	53	19	13
	88	24	19
	430	106	111
_	0.9	0.2	0.2
_	16 500	7.2 124	3.5 154
	<0.5	<0.5	0
	<0.5	<0.5	0.1
	<1	<1	0.11
	<1	<1	0.13
	<1	<1	0.11
	<0.5 <1	<0.5 <1	0 0.11
_	<1	<1	0.11
	<0.5	<0.5	0
	<0.5	<0.5	
	1.8	0.6	0.3

											Field II)	MW1	MW2	MW3	T		
											ation C			MW2	MW3	1		
											Well		-	-	-	1		
					A DIA/C 2011	10000 2011		012 CV			npled [7/02/2017	7/02/2017	7/02/2017			
				ANZECC 2000 Fresh Water (95%)	ADWG 2011 Health	ADWG 2011 Aesthetic	NEPM 2 Resider											
							Vapour					on, Sand						
							Clay								1	Statistical Sumn		
BTEX	Benzene	µg/L	LOR	950	1		2-4m 5000	4-8m 5000			4-8m 800	>8m 900	<1	<1	-	Maximum <1	Average <1	Standard
	Toluene	μg/L μg/L	1	950	800	25	NL	NL	NL	NL	NL	NL	<1	<1	<1	<1	<1	0
	Ethylbenzene	μg/L	1		300	3	NL	NL	NL	NL	NL	NL	<1	<1	<1	<1	<1	0
	Xylene (m & p)	μg/L	2										<2	<2	<2	<2	<2	0
	Xylene (o)	µg/L	1	350									<1	<1	<1	<1	<1	0
	Xylene Total	μg/L	3		600	20	NL	NL	NL	NL	NL	NL	<3	<3	<3	<3	<3	0
Н	C6 - C9 C10 - C14	μg/L μg/L	20 50										<20 <50	<20 <50		<20 <50	<20 <50	0
	C15 - C28	μg/L	100										<100	<100	<100	<100	<100	0
	C29-C36	μg/L	100										<100	<100	<100	<100	<100	0
	+C10 - C36 (Sum of total)	μg/L	100										<100	<100	<100	<100	<100	0
C Care TRH Fractions	C6-C10	μg/L	20										<20	<20		<20	<20	0
	C10-C16	μg/L	50										<50	<50		<50	<50	0
	C16-C34 C34-C40	μg/L μg/L	100 100										<100 <100	<100 <100		<100 <100	<100 <100	0
	F1: C6-C10 less BTEX	μg/L	20				NL	NL	NL	1000	1000	1000	<20	<20		<20	<20	0
	F2: >C10-C16 less Naphthalene	μg/L	50				NL	NL	NL	1000			<50	<50		<50	<50	0
1	Benzo(b+j)fluoranthene	µg/L	1										<1	<1	<1	<1	<1	0
	Acenaphthene	μg/L	1										<1	<1	<1	<1	<1	0
	Acenaphthylene	μg/L	1	0.4									<1	<1	<1	<1	<1	0
	Anthracene Benz(a)anthracene	μg/L μg/L	1	0.4									<1 <1	<1 <1	<1 <1	<1 <1	<1	0
	Benzo(a) pyrene	μg/L μg/L	1		0.01								<1	<1	<1	<1	<1	0
	Benzo(g,h,i)perylene	μg/L	1										<1	<1	<1	<1	<1	0
	Benzo(k)fluoranthene	μg/L	1										<1	<1	<1	<1	<1	0
	Chrysene	μg/L	1										<1	<1	<1	<1	<1	0
	Dibenz(a,h)anthracene	μg/L	1				_						<1	<1	<1	<1	<1	0
	Fluoranthene Fluorene	μg/L μg/L	1										<1 <1	<1 <1	<1 <1	<1 <1	<1	0
	Indeno(1,2,3-c,d)pyrene	μg/L	1										<1	<1	<1	<1	<1	0
	Naphthalene	μg/L	1	16			NL	NL	NL	NL	NL	NL	<1	<1	<1	<1	<1	0
	PAHs (Sum of total)	μg/L	1										<1	<1	<1	<1	<1	0
	Phenanthrene	µg/L	1										<1	<1		<1	<1	0
- 1-	Pyrene	μg/L	1		0.01								<1	<1		<1	<1	0
tals	Arsenic (Filtered) Cadmium (Filtered)	mg/L mg/L	0.001	0.0002	0.01								0.001 <0.0002	<0.001 <0.0002		0.001 <0.0002	0.001 0.0002	0
	Chromium (III+VI) (Filtered)	mg/L	0.001	0.0002	0.002								<0.001	<0.001		<0.001	0.001	0
	Copper (Filtered)	mg/L	0.001	0.0014	2	1							0.003	0.006		0.006	0.0043	0.0015
	Lead (Filtered)	mg/L	0.001	0.0034	0.01								<0.001	<0.001		<0.001	0.001	0
	Mercury (Filtered)	mg/L	0.0001	0.0006	0.001								<0.0001	<0.0001		<0.0001	0.0001	0
	Nickel (Filtered) Zinc (Filtered)	mg/L mg/L	0.001	0.011	0.02	3							0.029	0.003		0.029 0.18	0.013	0.014
anochlorine Pesticides	4,4-DDE	μg/L	0.005	0.008		5							<0.1	<0.1		<0.18	<0.1	0.073
	a-BHC	μg/L	0.1										<0.1	<0.1		<0.1	<0.1	0
	Aldrin	μg/L	0.1										<0.1	<0.1		<0.1	<0.1	0
	b-BHC	μg/L	0.1										<0.1	<0.1		<0.1	<0.1	0
	chlordane	μg/L	1	0.08	2								<1	<1	<1	<1	<1	0
	d-BHC DDD	μg/L μg/L	0.1										<0.1 <0.1	<0.1 <0.1		<0.1 <0.1	<0.1 <0.1	0
	DDT	μg/L	0.1	0.01	9								<0.1	<0.1		<0.1	<0.1	0
	Dieldrin	μg/L	0.1										<0.1	<0.1		<0.1	<0.1	0
													<0.1	<0.1		<0.1	<0.1	0
	Endosulfan I	μg/L	0.1										<0.1 <0.1	<0.1		<0.1 <0.1	<0.1	0
	Endosulfan II	μg/L μg/L	0.1										<01	<0.1	<0.1	1 A U U U	1 1 1	
	Endosulfan II Endosulfan sulphate	μg/L μg/L μg/L	0.1	0.02													<0.1	0
	Endosulfan II Endosulfan sulphate Endrin	μg/L μg/L μg/L μg/L	0.1 0.1 0.1	0.02									<0.1	<0.1	<0.1	<0.1	<0.1	0
	Endosulfan II Endosulfan sulphate	μg/L μg/L μg/L	0.1	0.02											<0.1 <0.1			0 0 0 0
	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1	0.2	10								<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1 <0.1	0 0 0 0 0
	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		10 0.3		 						<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0
	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2									<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0
	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene	μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2	0.3								<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0 0 0 0 0 0 0 0
	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2		Image: Constraint of the sector of the se							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rchlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene	μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09	0.3	Image: Constraint of the sector of the se							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0
chlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221	μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09	0.3	Image: section of the section of t							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0
ychlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221 Arochlor 1232	μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09 0.0002	0.3	Image: Constraint of the sector of the se							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0
ychlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242	μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09	0.3	Image: select							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0
lychlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221 Arochlor 1242 Arochlor 1248	μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09 0.0002 0.0002	0.3		Image: Constraint of the sector of						<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0
olychlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242	μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09 0.0002	0.3	Image: Constraint of the sector of the se	Image: Constraint of the sector of						<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0 0
lychlorinated Biphenyls	Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Toxaphene Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1254	μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.09 0.0002 0.0002	0.3	Image: Constraint of the sector of the se							<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	0 0

ANALYTICAL WATER SUMMARY TABLE CAMPSIE

Campsie, NSW

APPENDIX

PHOTOGRAPHIC LOG

Photograph 1. North-western portion of site, rear of automobile workshop, facing east towards former UST area.

Photograph 2. Southern portion of site, car parking area to commercial premises, facing east.

Photograph 3. Northern portion of Site, asbestos cement debris on soil surface.

Photograph 4. Southern portion of Site, adjoining Canterbury Road

Photograph 5. South-eastern portion of Site, corner of Canterbury Road and Stanley Street.

Photograph 6. BH5 near potential waste oil UST in operational workshop

Photograph 7. View along eastern boundary.

Photograph 8. North eastern corner of the site

E - Quality Control / Quality Assurance Report

Quality Assurance/Quality Control (QA/QC) procedures were implemented to ensure the precision accuracy, representativeness, completeness and comparability of all data gathered. The QA/QC procedures included:

- Equipment calibration to ensure field measurements obtained are accurate;
- Equipment decontamination to prevent cross contamination;
- The completion of a log for each soil bore;
- Use of appropriate measures (i.e. gloves) to prevent cross contamination;
- Appropriate sample identification;
- Collection and analysis of duplicate samples for QA/QC purposes;
- Correct sample preservation;
- Sample transport with Chain of Custody (COC) documentation; and
- Laboratory analysis in accordance with NATA accredited methods.

Table F 1 details the QA/QC procedures and sample collection details undertaken through the soil elements of the investigation. **Table E2** summarises the number of QA/QC samples collected during this investigation. Copies of all the COCs, along with the Sample Receipt Notifications (SRNs), Interpretive QA/QC Reports are provided in **Appendix J**.

Requirement	Yes/No	Comments
Equipment calibration	Yes	Calibration certificates are presented in Appendix F.
Equipment decontamination	Yes	Decontamination of sampling equipment (water quality meter etc.) was undertaken by washing with phosphate free detergent (Decon 90) followed by a rinse with potable water.
Soil logging	Yes	All boreholes drilled and soil samples collected were logged in accordance with the Unified Soil Classification System. Borehole logs are provided in Appendix B .
Sample collection	Yes	Samples were collected using disposable nitrile gloves and LDPE tubing and placed directly into Teflon lined sample jars provided by the laboratory. A clean pair of gloves and new bailer was used for each new sample being collected to limit the possibility of cross-contamination.
Sample identification	Yes	All samples were marked with a unique identifier including project number, sample location, depth and date.
QA/QC sample collection	Yes/No	One (1) soil duplicate samples was collected for intra-lab QA/QC purposes with a further one (1) triplicate samples collected to monitor the quality of the field practices for sample collection. Cardno based the investigation around a rate of one duplicate sample per 20 primary samples, as the requirement for duplicate sample collection.
		No groundwater duplicate samples were collected due to insufficient sample volume.
Sample preservation	Yes	Samples were placed in a chilled ice box with ice for storage and transport to the laboratory.
COC documentation	Yes	A COC form was completed by Cardno detailing sample identification, collection date, sampler and laboratory analysis required. The COC form was signed off and returned to Cardno by the laboratory staff upon receipt of all the samples. COC forms and Sample Receipt Notification (SRN) are provided in Appendix I . The SRN indicates that the samples were received at the laboratory intact and chilled and within the required holding times.

Table E 1 Field QAQC Method Validation

Requirement	Yes/No	Comments
NATA accredited methods	Yes	The NATA accredited Eurofins mgt analysed the samples in accordance with NATA accredited methods. Inter-lab QAQC samples were analysed at ALS Environmental. Analytical methods used are indicated in the stamped laboratory results provided in Appendix I .
Laboratory Internal QC	Yes	All Data Quality Objectives were met by the laboratories.

Table E 2 Field QAQC Collection Summary

Investigation		Sample Type and Number of Samples										
Element	Date	Primary	Duplicate	Split (Triplicate)	Trip blank	Trip Spike	Rinsate					
Soil	18/01/2017	20	1	1	0	0	0					

Relative Percentage Difference Determination

Laboratory results for duplicate and triplicate samples are assessed using a determination of the Relative Percentage Difference (RPD). Where a primary sample and a duplicate sample are compared, the RPD provides an indication of the reproducibility of the results, which incorporates the sampling method. Where a primary sample and a split sample are compared, the RPD provides an indication of the accuracy of the primary laboratory results as compared to the secondary laboratory result.

The calculation used to determine the RPD is:

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

Where:

Co = Concentration of the original sample

Cs = Concentration of the duplicate sample

In calculating the RPD values the following protocols were adopted:

- > Where both concentrations are above laboratory reporting limits the RPD formula is used;
- > Where both concentrations are below the laboratory reporting limits, no RPD is calculated; and
- > Where one or both sample concentrations are reported to be less than ten times (<10x) the laboratory reporting limit, the RPD is calculated but is not assessed against the adopted criterion.

In accordance with the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, Cardno adopts an RPD acceptance criterion up to 30% of the mean concentration of the analyte. It should be noted that variations might be higher for organic analysis, due to the volatile nature of the components, and for low concentrations of analytes.

The adopted criterion will not apply to RPDs where one of both concentrations are less than 10 times the reporting limit, as this criterion would otherwise overestimate the significance of minor variations in concentrations at or near the laboratory reporting limit. Large RPDs returned for low concentrations of analytes near the reporting limit is not as indicative of a significant difference in the results as a small RPD is for larger concentrations.

This approach is employed by NATA accredited laboratories when assessing internal duplicate sample RPDs. This approach acknowledges that concentrations at or around the reporting limit are too low for an accurate evaluation of the significance of the RPD.

This approach has been adopted when assessing the relevance (compliance) of RPDs during this investigation. RPDs will be calculated for sample sets where one or both concentrations are less than 10 times the reporting limit for discussion purposes, but will not be assessed as a pass or fail in relation to the criterion.

The parent-duplicate-triplicate sample relationships are presented in **Table E 3**, with RPD results presented in **Appendix C**.

Table E 1 Duplicate and Triplicate Sample Summary

		Sample	Type and Number of	fSamples
Matrix	Date	Parent Sample	Duplicate	Triplicate (Split)
Soil	18/01/2017	MW3_	QA1	QA2

The RPDs for all analytes were less than the adopted limits, with the exception of TRH C_{15} - C_{28} where the Duplicate RPD (30%) and the triplicate RPD (56%) exceeded the adopted 30% limit. Given the low concentrations of the hydrocarbons relative to the LOR, these results are not considered to alter the validity of the assessment.

Laboratory QC and QCI Report Summary

The laboratory selected for undertaking the analysis (Eurofins mgt) is NATA accredited for the analysis required, and undertook certain QA/QC requirements to demonstrate the suitability of the data that is obtained. The laboratory is required to undertake and report internal laboratory Quality Control (QC) procedures for all chemical analysis undertaken. The QC testing is required to include:

- > Laboratory duplicate sample analysis at the rate of one duplicate analysis per ten samples
- > Method blank at the rate of one method blank analysis per 20 samples
- > Laboratory control sample at the rate of one laboratory control sample analysis per 20 samples
- > Spike recovery analysis at the rate of one spike recovery analysis per 20 samples.

Compliance with the laboratory QA/QC requirements and non-conformance details are discussed in the internal Laboratory QA/QC reports included with the certificates of analysis in **Appendix I**.

Data quality outliers were reported by Eurofins mgt for the analysis undertaken. However, the data is considered suitable to screen, delineate and determine the presence or absence of these contaminants at the Site.

Cardno concludes that the data reported by the NATA accredited Eurofins mgt as presented in this report is suitable for interpretative purposes and to make conclusions/recommendations regarding Site contamination.

APPENDIX

CALIBRATION CERTIFICATES

Field Calibration Checklist Equipment Report – MiniRAE Lite PID

This MiniRAE Lite PID (*Unit*) has been performance checked as per Cardno Geosciences & Environment's *Equipment Bump Test and Calibration Procedure – MiniRAE Lite PID*,

The most recent factory calibration conducted on the unit expires on 28/12/ 2016.

Present	Damaged	(fem)
D,	D	Carry case
ť	D	MiniRAE Lite PID unit
Ø		Span gas cylinder containing 100ppm Iso-Butylene
e		Span gas flow control valve
	۵	Tubing to connect span gas to the Unit
Ø	۵	Repair kit
		Lamp cleaning kit
		MiniRAE Lite PID User's Guide
ď	Ċ	Spare battery cartridge
đ		Spare external filter/s
C	Ċ	Computer connector cable
ď		Multi Gas Detector Bump Test and Field Calibration Procedure
ď	۵	Recharger & recharging dock
d⁄		AES Calibration Certificate (factory calibration)

The Unit has been checked for and comprises of the following items:

The following tests and operational checks have been conducted on the Unit:

Tost Passed	Test	
	Battery Voltage >4.2V (V	· · · · · · · · · · · · · · · · · · ·
)
	Pump test conducted	
	10 Minute test (Unit is operational)	
		Battery Voltage >4.2V (V Operations check (screen functions

The Unit has been performance checked and field calibrated as follows:

Sensor	Span Cas Concertications	Fixesh Afr Calibration	Span Gas Field Calibration	Bump Test Range Within ±5%
VOCs	100 ppm	V		🗖 (±5 ppm)
Checked/ Fiel	d Calibrated by: <u>Ys</u>			
Date: <u>29</u> ,	7.16			

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?
pН	7.00H /pH 4.00	7.00 pH	4.00 pH	NI1803/NE1989	
Conductivity	12.88 mS/cm	👩 mS/cm	12.88 mS/cm	OA1331	
TDS	36 ppk	o ppk	36 ppk	NJ1857	
Dissolved Oxygen	Sodium Sulphite / Air	Oppm in Sodium Sulphite	8.79 ppm Saturation in Air	1602213461 NJ1314	

Check only

l				
Redox	Electrode	240mV	122	ND1568(A)
(ORP) *	operability test	+/- 10%	$\chi 3 \chi$ mV	ND1857(B)
and the second	Performance and the provide a second second second second second			

* This meter uses an Ag/AgCI ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode), add 199mV to the mV reading.

4	er 111	
Battery Status	8.1V	(min 7.2V)
Electrical Safety Ta	attached	

	Tag No: <u>೧೦೮790</u>
	Valid to: <u>14/10/16</u>
Date:	09/09/16
Signed:	- Ale

Oi

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Date: Signed:

TFS Reference Return Date: / 1 Customer Reference **Return Time:** Equipment ID 90FLMV Condition on return: Equipment Serial No.

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 1300 735 295	Fax: (Free Call) 1800 675 123	Email: Bente	IsAU@Thermofisher.com
Melbourne Branch Sydhey Branch	Adelaide Branch	Brisbane Branch	Perth Branch
5 Caribbean Drive, Lavel 1, 4 Talavera Roart,	27 Beulah Road, Norwood,	Unit 2/3 Ross St	121 Beringarra A.a
Scoresby 3179 North Ryde 2113	South Australia 5067	Newstead 4036	Malaga WA 6090

APPENDIX

SUMMARY OF PREVIOUS REPORTS

G. Site Identification and Previous Reports

This section summarises the findings of previous investigations at the Site.

G.1 Former Investigations

Two previous investigation reports were provided. The findings of each investigation including the relevant environmental information regarding the contamination status of the site from the available reports has been summarised below:

SMEC Testing Services (2014), 'Preliminary Geotechnical Assessment, 453-459 Canterbury Road, Campsie, Project No. 20009/4984C. Dated November

SMEC Testing Services Pty Ltd (SMEC) were commissioned by Lone Star Construction Pty Ltd (SPBC) to undertake a preliminary geotechnical assessment of 453-459 Canterbury Road, Campsie NSW.

The purpose of the investigation was to; assess potential subsurface conditions at the site, classify the site in accordance with AS2870; make comment on temporary and permanent support of the proposed excavation, recommend foundation design parameters and assess potential issues regarding rock excavation.

Site Description

It was understood that the site located at 453-459 Canterbury Road, Campsie and was to be redeveloped two comprise several above ground storeys with one level of basement car parking requiring excavating to a depth of approximately 3 metres below ground level.

Prior to the land swap the site comprised a warehouse, concrete slab and driveway and pavement and asphalt paved parking and storage areas. The site was relatively level. Evidence of a disused underground storage tank (UST) was observed along the northern boundary of the site.

Work Completed

SMEC undertook a site walkover and desktop investigation of the site. Intrusive investigations were not undertaken as part of the assessment.

Results and Conclusions:

- > Construction of the basement may require excavation near to the site boundaries, and therefore in close proximity to adjacent buildings.
- > There is the potential for medium or high strength rock to be encountered which may necessitate the use of rock excavation equipment.
- > Car should be taken so to not damage buildings or other developments on adjacent properties when excavating rock. This may require the adoption of excavation methods which limit ground vibrations.
- > Due to the proximity of the excavation to property boundaries, temporary support will be required for soils.
- > The base of the proposed excavation is likely to be very stiff silty clays or weathered shale. In order to ensure compliance with bearing values, care should be taken to ensure the base of the excavations is free of loose material prior to concerting.

TRACE Environmental Pty Ltd, Preliminary Site Investigation report, prepared for Lone Star Construction Pty Ltd, Project No: 19687/4272C, Report No: 14/1990 Dated 21 November 2014

TRACE Environmental Pty Ltd (TRACE) were commissioned by Lone Star Construction Pty Ltd to prepare a Preliminary Site Investigation (PSI) for 453-459 Canterbury Road, Campsie NSW.

The objectives of the PSI were to:

- > Assess the site condition relative to present and historical contaminating activities;
- > Identify any current or historical potentially contaminating activities;

- > Identify the potential types and nature of contamination (if applicable);
- > Identify potential human and ecological receptors (if applicable);
- > Develop a preliminary Conceptual Site Model (CSM) to identify potential risks to human health and /or ecological receptors that could potentially affect the use of the site; and
- > Provide conclusions and recommendations regarding the suitability of the site for the proposed redevelopment, and to identify any further investigation for potential site contamination, (if warranted).

Work Completed:

- > A desktop study including review of historical records and database searches;
- > Undertook a site inspection;
- > Developed an initial CSM of the site;
- > Outlined any recommendations for further investigation which may be warranted.

Results and Conclusions:

- > The site has been used for commercial purposes since the 1960's which included automobile service and maintenance. Prior to this the site was used for low density residential purposes.
- > At least two underground storage tanks were historically operating at the site, with them potentially remaining on site. The presence and historic use of USTs may be a source of subsurface impacts.
- > Historic car maintenance and servicing activities, importation of uncontrolled fill and the presence of asbestos containing building materials may also be sources of potential soil impacts.
- > The environmental site setting was considered to be moderately sensitive based on the preliminary CSM.
- > The site is not located in an area of known acid sulfate soils.

TRACE Recommended:

> There is considered to be a moderate potential for subsurface impacts at the Site, and as such a Detailed Site Investigation (DSI) was recommended.

Groundwater Sampling Field Record

	WELL ID:MW(
					Jo	b Information	_					
Date:	7/2	2/17				Proj	ect Locati	on: Car	pre			
Project N	Project Name: Sampler: 5											
Project N	Number: 🍃	57 917 0	68		•	Wel	Location	/ Coordina	tes: Rear Lat			
					1	Well Details						
Well Cor	ndition: Lo	ckęd / Un	locked	Well F	Protection:	Cap / Co	iver	N N	/ell Measurement Point: TOC			
Casing [Diameter:	50m		Bore	Diameter:	form		S	creen Depth:			
	oth (mBGL):		·		(mBGL):							
Bore Vol	ume (L):	B- 4	?	Purge	Volume (I	_):			NAPL Thickness (mm):			
					Sam	pling Equip	ment					
	uality Probe	9:	,									
				<u> </u>	lingt	F	<u> </u>					
Purge M (Please C		Baile	r: Stainle	s Plas	tic P u	ump: Sub	omersible	Micro-	ourge Passive: Hydrasleeve			
					Purge Wat	er Quality P	arameters					
Litres	Time	DO (mg/L)	EC (μS/Cm)	рН	Eh (mV)	Temp	Turb.	Water Colour	Comments / Observations			
2	0928		3-31 mis	4.55		21.1		brown LIENY	G.			
4.2	0935		364	7.29	171.9	20.5						
6	0 939		402	7.33	141.16	70-3						
7.8	1056		3.57	7.62	1518	225						
					-							
						<u> </u>			<u> </u>			
Stabilisati	lon Criteria	±10%	±3%	±0.1	±10 mV	±10%	±10%	-				
Did field p	arameters st	abilise?	[YN	N/A]	Was the w	vell dry purg	ed? Y N			
					San	nple Collec	tion					
	Sam	ple ID:				e Sample ID			Rinsate ID:			
Container Type												
Field Filtra	ation				<u> </u>							
Preservat	ion											

APPENDIX

LABORATORY REPORTS

Animatical Sectore Animatical Sectore Control Contro Co																
Initialize Operationalize Operationalize Operationalize Initialize Initialize Operationalize Initialize Initialize Initialize Initialize Initialize Initialize Initialize Initialize Initialize <t< th=""><th></th><th>n Drysdale</th><th></th><th></th><th></th><th></th><th>Project Nam</th><th>ài</th><th>Can</th><th>psie Dsi</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		n Drysdale					Project Nam	ài	Can	psie Dsi						
motion Tenning Designation Designation Designation 1000.1 Series (Series (Ser		748					Project Num	oer:	593	17080				_		
nume: a certaine certaine certaine a certaine a certaine a certaine a certai		Selby					PO No.:							_		
State Dipolation Defension Defension If is the state state is the st		700					Project Spec	ific Quote No						_		
		n Drysdale					Date results	required:	書の	District.				_		
angle ID Leboration Sample (Lip Acceloration Schwarz) (Acceloration Schwar	Email Address (results and invo	ice):	steven.drysdale@car	dho.com.au			Report form:	Ð						<u> </u>		
Andread (1) Lational (1) Sample (1) Andread (1)	ddress: Level 9 - The Forum. 2	3 Pacific Highway, St Leo	mards. New South W	ales 2065												
angle D Leboratory Sample D No. Containes Data Matrix Matrix Matrix Diff No. Containes 0.015 - 2 No. 0.017 Soil X X X X <td>and the statistic for the</td> <td>L IN NO</td> <td>Sample Information</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>Analysis Required</td> <td></td> <td></td> <td></td> <td>Comments</td> <td></td>	and the statistic for the	L IN NO	Sample Information			-					Analysis Required				Comments	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ooratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	HA9 \ NX3T8 \ H9	Plenol / PCB / OCP	(8) eisiam yvsat							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	Ni	18.01.17	Soil	×	4 ×	4×	╞						
			2	Nil	18.01.17	Soil	×	×	×	×						
			2	Nil	18.01.17	Soil	×	×	×	×						
0.0 22 NII 60:17 Soil X <			2	ΗN	18.01.17	Soil	×									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UE ENAN		2	IN	18.01.17	Soil		-						_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH5_0.2		0	e :	18.01.17	Soil	×	× >	××	× >					E	
	- C.1-0.1_1HB		N 0	e in	18.01.17	Soil	< ×	< ×	< ×	< ×						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	Ni	18.01.17	Soil	×	×	×	×						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	Nil	18.01.17	Soil	×	×	×	×						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH4_1.5		2	Nii	18.01.17	Soil	×	×	×	×						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7	Nil	18.01.17	Soil	×	×	×	×			_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BH3_1.8		01 0	Z	18.01.17	Soil	*	×	×	× ;						
10 2 Ni 1701.17 Soil X X X 10 2 Ni 1701.17 Soil X X X 13 2 Ni 1701.17 Soil X X X 13 2 Ni 1701.17 Soil X X X 16 2 Ni 1701.17 Soil X X X 15 2 Ni 1701.17 Soil X X X 15 2 Ni 1701.17 Soil X X X 11 2 Ni 1701.17 Soil X X X 16 2 Ni 1701.17 Soil X X X 1.13 2 Ni 1701.17 Soil X X X 1.14 2 Ni 1701.17 Soil X X X 1.16 2 Ni 1701.17 Soil X X X 1.18 1 1 101.17 Soil X X X 1 1 Ni 18.01.17 Soil X X X	BH3_3.0 RH10_1.6		2	IN IN	12.01.17	Soil	< ×	< ×	< ×	< ×	+					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UH10_2.0		2	NI	17.01.17	Soil		-	-							
13 13 10 170.17 Soil 1 <	BH9_1.0 -		2	Nil	17.01.17	Soil	×	×	×	×						
16 2 Ni 1701.17 Soil X X X X X X 0.5 2 Ni 17.01.17 Soil X X X X X 1.2 2 Ni 17.01.17 Soil X X X X X 1.1 2 Ni 17.01.17 Soil X X X X 1.1.0 2 Ni 17.01.17 Soil X X X X 1.1.0 2 Ni 17.01.17 Soil X X X X 1.1.1 1 Ni 17.01.17 Soil X X X X 1.1.1 Ni 17.01.17 Soil X X X X 1.1 Ni 18.01.17 Soil X X X 1.1	BH9_1.3		2	Nil	17.01.17	Soil	2		_	×						
	BH8 1 6		2	Nil	17.01.17	Soil				×	_					
1.2 2 Nil 170117 Soil X X X X X 1.8 2 Nil 170117 Soil X X X X X 1.0 2 Nil 170117 Soil X X X X 4.9 2 Nil 170117 Soil X X X X N 1 1 Nil 170117 Soil X X X X N 1 1 Nil 18.01.17 Soil X X X X V2 1 Nil 18.01.17 Soil X X X X Li Nil 18.01.17 Soil X X X X Li Nil 18.01.17 Soil X X X Li Nil <td>BH8_0.5</td> <td></td> <td>2</td> <td>IIN</td> <td>17.01.17</td> <td>Soil</td> <td>×</td> <td>×</td> <td>+</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BH8_0.5		2	IIN	17.01.17	Soil	×	×	+	×						
10 2 Nil 1701.17 Soil X X X X 10 2 Nil 1701.17 Soil X X X X 11 1 Nil 17.01.17 Soil X X X X 11 1 Nil 18.01.17 Soil X X X X 12 Nil 18.01.17 Soil X X X X 11 Nil 18.01.17 Soil X X X 10; Received by: Imme / company Imme / company 10 Inter / company Date & Time: Date & Time:	BH6_1.2		~ ~	Z 2	17.01.17	Sol	× >	< >	+							
4.9 2 NII 17.01.17 Soil X	MW/7 1.0		7 6		17.01.17	Nois	< ×	< ×	t		l					
A1 1 Nil 18.01.17 Soil X	MW2 4.9		10	IN	17.01.17	Soil	×	×		×						
A2 1 Nij 18.01.17 Soil by: Received by: Received by: Received by: iname / company) Iname / company Iname / company Date & Time: Date & Time: Date & Time:	aA1		1	Ni	18.01.17	Soil	×	×		×						
Dy: Received by: Received by: Dany (name / company) (name / company) Date & Time: Date & Time: Date & Time:	QA2		L	Ni	18.01.17	Soil	-		-			-	_		Forward to ALS	2
Date & Time: Date & Time: Date & Time:	linguished by:		Received by:			Relinquished by:				Received by	The week	Inla.	Relinquished by:			
													Date 9 Times			
	te & Time:		Date & Time			Vate & lime:						donil	W Date & Hine:			
Signature: Signature Sign	gnature:		Signature.			Signature:				Signature:			Signature:			

mgt

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

Steven Drysdale

Report	
Project name	
Project ID	
Received Date	

530963-S CAMPSIE DSI 59917080 Jan 19, 2017

Client Sample ID			BH7 0.2	MW1 0.8	MW1 4.0	MW3 0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09848	S17-Ja09849	S17-Ja09850	S17-Ja09851
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	-	Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	20	< 20
TRH C15-C28	50	mg/kg	100	1000	220	89
TRH C29-C36	50	mg/kg	< 50	960	190	< 50
TRH C10-36 (Total)	50	mg/kg	100	1960	430	89
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	81	84	85	81
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.2	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.5	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			BH7_0.2	MW1_0.8	MW1_4.0	MW3_0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09848	S17-Ja09849	S17-Ja09850	S17-Ja09851
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.4	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	6.8	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	102	96	108
p-Terphenyl-d14 (surr.)	1	%	97	93	88	92
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	62	58	51	51
Tetrachloro-m-xylene (surr.)	1	%	77	80	60	62
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	62	58	51	51
Tetrachloro-m-xylene (surr.)	1	%	77	80	60	62
Speciated Phenols	I					
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4

Client Sample ID			BH7_0.2	MW1_0.8	MW1_4.0	MW3_0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09848	S17-Ja09849	S17-Ja09850	S17-Ja09851
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Speciated Phenols						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	96	98	95	101
Total Recoverable Hydrocarbons - 2013 N	EPM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	110	1700	350	< 100
TRH >C34-C40	100	mg/kg	< 100	600	110	< 100
Heavy Metals						
Arsenic	2	mg/kg	8.2	11	13	8.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	17	11	6.9
Copper	5	mg/kg	11	33	33	22
Lead	5	mg/kg	160	110	25	71
Mercury	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	6.4	< 5	16
Zinc	5	mg/kg	130	150	20	55
% Moisture	1	%	20	21	17	26

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH5_0.2 Soil S17-Ja09852	BH1_1.0-1.5 Soil S17-Ja09853	BH1_2.4 Soil S17-Ja09854	BH2_0.5 Soil S17-Ja09855
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	310	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	170	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	500	< 50	< 50	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	83	82	83	85
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH5_0.2	BH1_1.0-1.5	BH1_2.4	BH2_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09852	S17-Ja09853	S17-Ja09854	S17-Ja09855
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5		< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5		< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5		< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5					
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg %	< 0.5	< 0.5 93	< 0.5 94	< 0.5
2-Fluorobiphenyl (surr.)	1	%	98 86		104	
p-Terphenyl-d14 (surr.) Organochlorine Pesticides		70	00	101	104	100
	0.4		0.4	0.1	0.1	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE 4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
		mg/kg	< 0.05		< 0.05	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
•		mg/kg				
Endrin Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05		< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
		mg/kg				
Methoxychlor Toxaphono	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene DibutyIchlorendate (surr.)	1	mg/kg %	< 1 50	< 1 61	< 1 61	< 1 58
	1	%	77	01	83	00

Client Sample ID			BH5_0.2	BH1_1.0-1.5	BH1_2.4	BH2_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09852	S17-Ja09853	S17-Ja09854	S17-Ja09855
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	2011	0				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	50	61	61	58
Tetrachloro-m-xylene (surr.)	1	%	77	88	83	82
Speciated Phenols						
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	92	101	103	99
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions	·				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	410	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals	·					
Arsenic	2	mg/kg	6.4	19	8.9	350
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.7	16	9.5	8.9
Copper	5	mg/kg	37	88	11	45
Lead	5	mg/kg	24	32	15	63
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.7
Nickel	5	mg/kg	12	6.6	< 5	8.6
Zinc	5	mg/kg	70	72	< 5	240
% Moisture	1	%	8.1	23	19	14

Client Sample ID			BH2_2.4	BH4_1.5	BH4_2.5	BH3_1.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09856	S17-Ja09857	S17-Ja09858	S17-Ja09859
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit	041110, 2017	041110, 2017	001110,2017	
Total Recoverable Hydrocarbons - 1999 NEPM	_	Unit				
TRH C6-C9			. 00	. 20		. 20
TRH C10-C14	20	mg/kg	< 20 < 20	< 20 29	20 190	< 20
TRH C15-C28	50	mg/kg	< 50	1600	7900	1100
TRH C29-C36	50	mg/kg mg/kg	< 50	1500	7900	1100
TRH C10-36 (Total)	50	mg/kg	< 50	3129	15290	2200
BTEX	50	iiig/kg	< 30	5129	15290	2200
	0.1	mallea	.01	.01	.01	.0.1
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene		mg/kg	< 0.1		< 0.1	
Ethylbenzene m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
o-Xylene	0.2	mg/kg mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Xylenes - Total	0.1		< 0.1	< 0.1	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)	1	mg/kg %	< 0.3 83	84	83	83
Total Recoverable Hydrocarbons - 2013 NEPM		/0	00	04	0.5	
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg mg/kg	< 50	< 0.5 < 50	< 0.5 240	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	31	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	31	< 20
Polycyclic Aromatic Hydrocarbons	20	iiig/kg	< 20	< 20	51	< 20
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	1.7	0.8
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	1.4	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	5.7	0.8
2-Fluorobiphenyl (surr.)	1	%	90	105	96	95
p-Terphenyl-d14 (surr.)	1	%	104	95	107	86
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			BH2_2.4	BH4_1.5	BH4_2.5	BH3_1.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09856	S17-Ja09857	S17-Ja09858	S17-Ja09859
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	62	55	79	53
Tetrachloro-m-xylene (surr.)	1	%	86	78	88	56
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	62	55	79	53
Tetrachloro-m-xylene (surr.)	1	%	86	78	88	56
Speciated Phenols						
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	1.8	< 0.5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	99	101	106	92
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	240	< 50
TRH >C16-C34	100	mg/kg	< 100	2600	13000	1900
TRH >C34-C40	100	mg/kg	< 100	900	4700	680
Heavy Metals						
Arsenic	2	mg/kg	13	32	6.2	9.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	46	24	21	30
Copper	5	mg/kg	7.0	33	21	9.2

Client Sample ID Sample Matrix			BH2_2.4 Soil	BH4_1.5 Soil	BH4_2.5 Soil	BH3_1.8 Soil
Eurofins mgt Sample No.			S17-Ja09856	S17-Ja09857	S17-Ja09858	S17-Ja09859
Date Sampled			Jan 18, 2017	Jan 18, 2017	Jan 18, 2017	Jan 18, 2017
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	27	220	170	31
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	6.1	5.6
Zinc	5	mg/kg	6.7	120	270	6.4
% Moisture	1	%	17	22	34	33

Client Sample ID			BH3_3.0	BH10_1.8	BH9_1.0	BH8_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09860	S17-Ja09861	S17-Ja09862	S17-Ja09863
Date Sampled			Jan 18, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	70	< 50	56	200
TRH C29-C36	50	mg/kg	50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	120	< 50	56	200
BTEX	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82	83	82	85
Total Recoverable Hydrocarbons - 2013 NEPM F	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	6.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	6.8
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	6.8
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.1
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.9
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.3
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.0
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.7
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.1
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.8
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	12
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.7

Client Sample ID			BH3_3.0	BH10_1.8	BH9_1.0	BH8_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09860	S17-Ja09861	S17-Ja09862	S17-Ja09863
Date Sampled			Jan 18, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	8.1
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	10
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	61.8
2-Fluorobiphenyl (surr.)	1	%	87	89	89	104
p-Terphenyl-d14 (surr.)	1	%	94	97	100	96
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	69	54	52	73
Tetrachloro-m-xylene (surr.)	1	%	71	93	93	68
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	69	54	52	73
Tetrachloro-m-xylene (surr.)	1	%	71	93	93	68
Speciated Phenols		1				
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4

Client Sample ID			BH3_3.0	BH10_1.8	BH9_1.0	BH8_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09860	S17-Ja09861	S17-Ja09862	S17-Ja09863
Date Sampled			Jan 18, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				
Speciated Phenols						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	93	95	95	98
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	190
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	15	< 2	11	6.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	53	5.9	26	16
Copper	5	mg/kg	6.2	6.2	5.4	13
Lead	5	mg/kg	29	15	25	180
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	9.3	< 5	5.8	76
% Moisture	1	%	29	20	24	18

Client Sample ID Sample Matrix			BH6_1.2 Soil	BH6_1.8 Soil	MW2_1.0 Soil	MW2_4.5 Soil
Eurofins mgt Sample No.			S17-Ja09864	S17-Ja09865	S17-Ja09866	S17-Ja09867
Date Sampled			Jan 17, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	96	< 50	77	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	96	< 50	77	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	83	84	84	84
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH6_1.2	BH6_1.8	MW2_1.0	MW2_4.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09864	S17-Ja09865	S17-Ja09866	S17-Ja09867
Date Sampled			Jan 17, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				,
Polycyclic Aromatic Hydrocarbons	Lon	Onic				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	3.5	< 0.5	0.8	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	3.7	0.6	1.1	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	4.0	1.2	1.4	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	2.4	< 0.5	0.8	< 0.5
Benzo(a)pyrene	0.5	mg/kg	2.5	< 0.5	0.6	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	3.1	< 0.5	0.8	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	2.6	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	2.0	< 0.5	0.5	< 0.5
Chrysene	0.5	mg/kg	2.1	< 0.5	0.7	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	4.0	< 0.5	1.1	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.8	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	1.2	< 0.5	0.8	< 0.5
Pyrene	0.5	mg/kg	4.1	< 0.5	1.1	< 0.5
Total PAH*	0.5	mg/kg	25.9	< 0.5	6.4	< 0.5
2-Fluorobiphenyl (surr.)	1	%	86	89	99	87
p-Terphenyl-d14 (surr.)	1	%	94	101	95	98
Organochlorine Pesticides		,,,				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	77	70	66	58
Tetrachloro-m-xylene (surr.)	1	%	94	86	76	83

Client Sample ID			BH6_1.2	BH6_1.8	MW2_1.0	MW2_4.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja09864	S17-Ja09865	S17-Ja09866	S17-Ja09867
Date Sampled			Jan 17, 2017	Jan 17, 2017	Jan 17, 2017	Jan 17, 2017
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	•					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	77	70	66	58
Tetrachloro-m-xylene (surr.)	1	%	94	86	76	83
Speciated Phenols						
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
Phenol-d5 (surr.)	1	%	93	94	96	93
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	120	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	14	9.6	5.3	11
Cadmium	0.4	mg/kg	0.7	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	33	26	13	7.4
Copper	5	mg/kg	26	< 5	48	19
Lead	5	mg/kg	240	20	300	430
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.9	0.1
Nickel	5	mg/kg	9.1	< 5	5.1	5.2
Zinc	5	mg/kg	500	< 5	500	350
% Moisture	1	%	23	24	17	17

Client Sample ID			QA1 Soil
Sample Matrix			
Eurofins mgt Sample No.			S17-Ja09868
Date Sampled			Jan 17, 2017
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	-	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	66
TRH C29-C36	50	mg/kg	< 50
TRH C10-36 (Total)	50	mg/kg	66
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	97
p-Terphenyl-d14 (surr.)	1	%	91
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05

Client Sample ID			QA1
Sample Matrix			Soil
Eurofins mgt Sample No.			S17-Ja09868
Date Sampled			Jan 17, 2017
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2
Toxaphene	1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	54
Tetrachloro-m-xylene (surr.)	1	%	72
Polychlorinated Biphenyls		1	
Aroclor-1016	0.5	mg/kg	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5
Total PCB*	0.5	mg/kg	< 0.5
Dibutylchlorendate (surr.)	1	%	54
Tetrachloro-m-xylene (surr.)	1	%	72
Speciated Phenols			
2.4-Dichlorophenol	0.5	mg/kg	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1
2.4.6-Trichlorophenol	1.0	mg/kg	< 1
Phenol	0.5	mg/kg	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4
2-Chlorophenol	0.5	mg/kg	< 0.5
2-Nitrophenol	1	mg/kg	< 1
4-Chloro-3-methylphenol	1.0	mg/kg	< 1
Pentachlorophenol	1.0	mg/kg	< 1
Phenol-d5 (surr.)		%	91
Total Recoverable Hydrocarbons - 2013 NEF			
TRH >C10-C16	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
Heavy Metals			
Arsenic	2	mg/kg	10
	0.4	mg/kg	< 0.4
Cadmium Chromium	5	mg/kg	7.6

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			QA1 Soil S17-Ja09868 Jan 17, 2017
Test/Reference	LOR	Unit	5an 17, 2017
Heavy Metals			
Lead	5	mg/kg	87
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	15
Zinc	5	mg/kg	68
% Moisture	1	%	8.6

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Total Recoverable Hydrocarbons - 1999 NEPM Fractions Sydney Jan 20, 2017 14 Day - Method: TRH C6-C36 - LTM-ORG-2010 - 14 Day - - - - 14 Day -	Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayBTEXSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayPolycyclic Aromatic HydrocarbonsSydneyJan 20, 201714 Day- Method: E007 Polyaromatic HydrocarbonsSydneyJan 20, 201714 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJan 20, 201714 DayOrganochlorine PesticidesSydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201714 DayPolychlorinated BiphenylsSydneyJan 20, 201728 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201714 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSJan 20, 201728 Day	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 20, 2017	14 Day
Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayTotal Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayBTEXSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayPolycyclic Aromatic HydrocarbonsSydneyJan 20, 201714 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJan 20, 201714 DayOrganochlorine PesticidesSydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201728 Day- Method: E013 Polychlorinated BiphenylsSydneyJan 20, 201714 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: LTM-MET-3040_RO TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSJan 20, 201728 Day	- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM FractionsSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 DayBTEXSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010SydneyJan 20, 201714 Day- Method: E007 Polyaromatic HydrocarbonsSydneyJan 20, 201714 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201728 Day- Method: E013 Polychlorinated BiphenylsSydneyJan 20, 201714 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJan 20, 201728 Day	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 20, 2017	14 Day
 Method: TRH C6-C40 - LTM-ORG-2010 BTEX Sydney Jan 20, 2017 14 Day Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons Method: E007 Polyaromatic Hydrocarbons (PAH) Organochlorine Pesticides Sydney Jan 20, 2017 14 Day Method: E013 Organochlorine Pesticides (OC) Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: TRH C6-C40 - LTM-ORG-2010			
BTEXSydneyJan 20, 201714 Day- Method: TRH C6-C40 - LTM-ORG-2010Polycyclic Aromatic HydrocarbonsSydneyJan 20, 201714 DayPolycyclic Aromatic Hydrocarbons (PAH)SydneyJan 20, 201714 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)SydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201714 Day- Method: E013 Organochlorina Pesticides (OC)SydneyJan 20, 201728 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJan 20, 201728 Day	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 20, 2017	14 Day
 Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons Method: E007 Polyaromatic Hydrocarbons (PAH) Organochlorine Pesticides Sydney Jan 20, 2017 14 Day Method: E013 Organochlorine Pesticides (OC) Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 	- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic HydrocarbonsSydneyJan 20, 201714 Day- Method: E007 Polyaromatic Hydrocarbons (PAH)Organochlorine PesticidesSydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201728 Day- Method: E013 Polychlorinated BiphenylsSydneyJan 20, 201728 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 Day- Method: E018 Speciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJan 20, 201728 Day	BTEX	Sydney	Jan 20, 2017	14 Day
 Method: E007 Polyaromatic Hydrocarbons (PAH) Organochlorine Pesticides Sydney Jan 20, 2017 14 Day Method: E013 Organochlorine Pesticides (OC) Polychlorinated Biphenyls Method: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Sydney Jan 20, 2017 14 Day Method: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Kethod: E008 Speciated Phenols Method: E008 Speciated Phenols Sydney Jan 20, 2017 28 Day 	- Method: TRH C6-C40 - LTM-ORG-2010			
Organochlorine PesticidesSydneyJan 20, 201714 Day- Method: E013 Organochlorine Pesticides (OC)SydneyJan 20, 201728 DayPolychlorinated BiphenylsSydneyJan 20, 201728 Day- Method: E013 Polychlorinated Biphenyls (PCB)SydneyJan 20, 201714 DaySpeciated PhenolsSydneyJan 20, 201714 Day- Method: E008 Speciated PhenolsSydneyJan 20, 201728 Day- Method: E008 Constrained BiphenylsSydneyJan 20, 201728 Day- Method: E008 Constrained BiphenolsSydneyJan 20, 201728 Day- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MSSydneyJan 20, 201728 Day	Polycyclic Aromatic Hydrocarbons	Sydney	Jan 20, 2017	14 Day
- Method: E013 Organochlorine Pesticides (OC) Polychlorinated Biphenyls (OC) Nethod: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Speciated Phenols Method: E008 Speciated Phenols Method: E008 Speciated Phenols Method: EURA Speciated Phenols Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Polychlorinated Biphenyls Sydney Jan 20, 2017 28 Day - Method: E013 Polychlorinated Biphenyls (PCB) -<	Organochlorine Pesticides	Sydney	Jan 20, 2017	14 Day
- Method: E013 Polychlorinated Biphenyls (PCB) Speciated Phenols Sydney Jan 20, 2017 14 Day - Method: E008 Speciated Phenols Metals M8 Sydney Jan 20, 2017 28 Day - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: E013 Organochlorine Pesticides (OC)			
Speciated Phenols Sydney Jan 20, 2017 14 Day - Method: E008 Speciated Phenols -	Polychlorinated Biphenyls	Sydney	Jan 20, 2017	28 Day
- Method: E008 Speciated Phenols Metals M8 Sydney Jan 20, 2017 28 Day - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: E013 Polychlorinated Biphenyls (PCB)			
Metals M8 Sydney Jan 20, 2017 28 Day - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS 30 Day	Speciated Phenols	Sydney	Jan 20, 2017	14 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS	- Method: E008 Speciated Phenols			
-	Metals M8	Sydney	Jan 20, 2017	28 Day
% Moisture Sydney Jan 19, 2017 14 Day	- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
	% Moisture	Sydney	Jan 19, 2017	14 Day
- Method: LTM-GEN-7080 Moisture	- Method: LTM-GEN-7080 Moisture			

	🔅 eur	ofins	mgt		ABN- 50 005 (e.mail : Enviro web : www.eur	Sales@	eurofine	s.com	2. 0 P N	elbourn 5 Kings akleigh hone : + ATA # 1 ite # 12	ton Tov VIC 310 -61 3 85 1261	66 64 500		16 Lar Pho	Mars Ro ne Cove one : +6'	Brisbane Perth Building F 1/21 Smallwood Place 2/91 Leach Highway Road Murarrie QLD 4172 Kewdale WA 6105 ve West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 1261 Site # 18217 Site # 18217 Site # 18217
Company Name: Cardno (NSW/ACT) Pty Ltd Address: Level 9, 203 Pacific Highway St Leonards NSW 2065 Project Name: CAMPSIE DSI Project ID: 59917080							Re Ph	der N port i ione: x:		02	30963 2 9490 2 9499	6 782				Received:Jan 19, 2017 1:46 PMDue:Jan 27, 2017Priority:5 DayContact Name:Steven DrysdaleEurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail					Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	Speciated Phenols	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142	271												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	х	х	Х	х	Х	Х	
Bris	bane Laborato	ry - NATA Site #	20794													_
Pert	h Laboratory -	NATA Site # 182	217													_
Exte	rnal Laborator	у														_
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH7_0.2	Jan 18, 2017		Soil	S17-Ja09848	Х		х	Х	х	х	Х	x	х	x	
2	MW1_0.8	Jan 18, 2017		Soil	S17-Ja09849	х		х	Х	х	х	Х	x	Х	Х	
3	 MW1_4.0	Jan 18, 2017		Soil	S17-Ja09850	Х		х	х	х	х	Х	x	х	Х	
4	MW3_0.8	Jan 18, 2017		Soil	S17-Ja09851	Х		х	х	х	х	Х	х	х	х	
5	BH5_0.2	Jan 18, 2017		Soil	S17-Ja09852	Х		х	х	х	х	Х	х	х	х	
6	BH1_1.0-1.5	Jan 18, 2017		Soil	S17-Ja09853	Х		х	х	х	х	Х	х	х	х	
7	BH1_2.4	Jan 18, 2017		Soil	S17-Ja09854	Х		х	х	х	х	Х	х	х	Х	
8	 BH2_0.5	Jan 18, 2017		Soil	S17-Ja09855	Х		х	х	х	х	Х	x	х	Х	
9	BH2_2.4	Jan 18, 2017		Soil	S17-Ja09856	х		х	х	х	х	Х	x	х	х	
	. –	-,		1												

	euro	ofins	mgt	ABN– 50 005 e.mail : Enviro web : www.eu	Sales@	eurofins m.au	s.com	2- 0 Pl N	lelbourn -5 Kings akleigh hone : + ATA # 1 ite # 12	ton Tov VIC 31 -61 3 85	66 564 500		16 Lar Pho	Mars Ro ne Cove one : +6	Brisbane Perth Building F 1/21 Smallwood Place 2/91 Leach Highway Road Murarrie QLD 4172 Kewdale WA 6105 ve West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 7 3902 4600 F61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 1261 Site # 18217 Site # 18217 Site # 18217
Addre Projec	Company Name: Cardno (NSW/ACT) Pty Ltd Address: Level 9, 203 Pacific Highway St Leonards NSW 2065 Project Name: CAMPSIE DSI Project ID: 59917080					Re	der N port # ione: x:		02	30963 2 949 2 949	6 782				Received:Jan 19, 2017 1:46 PMDue:Jan 27, 2017Priority:5 DayContact Name:Steven Drysdale
	Project ID: 59917080 Sample Detail					HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	Speciated Phenols	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Analytical Services Manager : Nibha Vaidya
		y - NATA Site #			Х	x	x	х	х	х	x	x	x	X	_
		NATA Site # 182 - NATA Site # 20			^	^		^	^	^	^			^	_
		TA Site # 18217			-										-
		Jan 18, 2017	Soil	S17-Ja09857	Х		x	Х	х	х	х	x	х	х	
		Jan 18, 2017	Soil	S17-Ja09858	Х		х	х	х	Х	Х	х	Х	Х	
12 BH	-I3_1.8	Jan 18, 2017	Soil	S17-Ja09859	Х		х	Х	х	Х	Х	х	Х	Х	
13 BH	-13_3.0	Jan 18, 2017	Soil	S17-Ja09860	Х		х	х	х	Х	Х	х	х	х	
14 BH	H10_1.8	Jan 17, 2017	Soil	S17-Ja09861	Х		X	х	х	Х	Х	X	х	х	
15 BH	H9_1.0	Jan 17, 2017	Soil	S17-Ja09862	Х		Х	Х	Х	Х	Х	X	Х	Х	
	_	Jan 17, 2017	Soil	S17-Ja09863	Х		Х	Х	Х	Х	Х	X	Х	Х	=
		Jan 17, 2017	Soil	S17-Ja09864	Х		Х	Х	Х	Х	Х	X	Х	Х	
	_	Jan 17, 2017	Soil	S17-Ja09865	Х		X	Х	Х	Х	Х	X	Х	Х	
	_	Jan 17, 2017	Soil	S17-Ja09866	Х		X	Х	Х	Х	Х	X	Х	Х	
		Jan 17, 2017	Soil	S17-Ja09867	X		X	Х	X	Х	Х	X	X	Х	
21 QA	A1 .	Jan 17, 2017	Soil	S17-Ja09868	Х		Х	Х	Х	Х	Х	Х	Х	Х	

eurofins mgt ABN- 50 005 00 e.mail : EnviroSi web : www.euro	Sales@eu	urofins n.au	s.com	2 C P N	lelbourn -5 Kings Dakleigh hone : + IATA # ² ite # 12	ton Tov VIC 31 -61 3 85 1261	66 564 500		16 Lar Pho	Mars Ro ne Cove one : +6	Brisbane Perth uilding F 1/21 Smallwood Place 2/91 Leach Highway toad Murarrie QLD 4172 Kewdale WA 6105 e West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 261 Site # 18217 Site # 18217 Site # 18217
Company Name: Cardno (NSW/ACT) Pty Ltd Address: Level 9, 203 Pacific Highway St Leonards NSW 2065		Order No.: Report #: Phone: Fax:			530963 02 9496 7822 02 9499 3902						Received:Jan 19, 2017 1:46 PMDue:Jan 27, 2017Priority:5 DayContact Name:Steven Drysdale
Project Name:CAMPSIE DSIProject ID:59917080											Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	Speciated Phenols	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
Melbourne Laboratory - NATA Site # 1254 & 14271											-
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	X	Х	Х	X	Х	Х	4
Brisbane Laboratory - NATA Site # 20794	+										4
Perth Laboratory - NATA Site # 18217		х									-
22 MW3_3.0 Jan 18, 2017 Soil S17-Ja09869 23 BH10_2.0 Jan 17, 2017 Soil S17-Ja09870	\rightarrow	X							-		-
23 BH10_2.0 Jan 17, 2017 Soil S17-Ja09870 24 BH9_1.3 Jan 17, 2017 Soil S17-Ja09871	\rightarrow	X									4
24 Brig_1.3 San 17, 2017 Soil S17-Sa09871 25 BH8_1.6 Jan 17, 2017 Soil S17-Ja09872	\rightarrow	X									1
Test Counts	21	4	21	21	21	21	21	21	21	21	-

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	4			1	
Total Recoverable Hydrocarbons - 1999 NEPM	I Fractions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM	I Fractions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		1 010		1 400	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank		1			1	
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Total PCB*	mg/kg	< 0.5		0.5	Pass	
Method Blank					1	
Speciated Phenols						
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1		1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1		1.0	Pass	
Phenol	mg/kg	< 0.5		0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2		0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4		0.4	Pass	
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2-Nitrophenol	mg/kg	< 1		1	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1		1.0	Pass	
Pentachlorophenol	mg/kg	< 1		1.0	Pass	
Method Blank		1			1	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank					1	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery					1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	109		70-130	Pass	
TRH C10-C14	%	76		70-130	Pass	
LCS - % Recovery		T			1	
BTEX						
Benzene	%	104		70-130	Pass	
Toluene	%	98		70-130	Pass	
Ethylbenzene	%	98		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
m&p-Xylenes	%	98	70-130	Pass	
o-Xylene	%	99	70-130	Pass	
Xylenes - Total	%	98	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	87	70-130	Pass	
TRH C6-C10	%	106	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	86	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	85	70-130	Pass	
Benz(a)anthracene	%	84	70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	
Benzo(b&i)fluoranthene	%	91	70-130	Pass	
Benzo(g.h.i)perylene	%	85	70-130	Pass	
Benzo(k)fluoranthene	%	92	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	81	70-130	Pass	
Fluoranthene	%	86	70-130	Pass	
Fluorene	%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	77	70-130	Pass	
Naphthalene	%	100	70-130	Pass	
Phenanthrene	%	77	70-130	Pass	
Pyrene	%	85	70-130	Pass	
	70	00	70-130	F d 55	
LCS - % Recovery					
Organochlorine Pesticides	0/	05	70.400	Daaa	
Chlordanes - Total	%	85	70-130	Pass	
4.4'-DDD	%	84	70-130	Pass	
4.4'-DDE	%	83	70-130	Pass	
4.4'-DDT	%	96	70-130	Pass	
a-BHC	%	81	70-130	Pass	
Aldrin	%	82	70-130	Pass	
b-BHC	%	80	70-130	Pass	
d-BHC	%	90	70-130	Pass	
Dieldrin	%	84	70-130	Pass	
Endosulfan I	%	84	70-130	Pass	
Endosulfan II	%	81	70-130	Pass	
Endosulfan sulphate	%	87	70-130	Pass	
Endrin	%	90	70-130	Pass	
Endrin aldehyde	%	82	70-130	Pass	
Endrin ketone	%	81	70-130	Pass	
g-BHC (Lindane)	%	76	70-130	Pass	
Heptachlor	%	101	70-130	Pass	
Heptachlor epoxide	%	85	70-130	Pass	
Hexachlorobenzene	%	79	70-130	Pass	
Methoxychlor	%	89	70-130	Pass	
Toxaphene	%	75	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	101	70-130	Pass	
LCS - % Recovery					
Speciated Phenols					
2.4-Dichlorophenol	%	90	30-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
2.4-Dimethylphenol			%	82		30-130	Pass	
2.4.5-Trichlorophenol			%	110		30-130	Pass	
2.4.6-Trichlorophenol			%	89		30-130	Pass	
Phenol			%	99		30-130	Pass	
2-Methylphenol (o-Cresol)			%	92		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	91		30-130	Pass	
2-Chlorophenol			%	100		30-130	Pass	
2-Nitrophenol			%	76		30-130	Pass	
4-Chloro-3-methylphenol			%	114		30-130	Pass	
Pentachlorophenol			%	62		30-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions						
TRH >C10-C16			%	71		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	94		70-130	Pass	
Cadmium			%	92		70-130	Pass	
Chromium			%	94		70-130	Pass	
Copper			%	93		70-130	Pass	
Lead			%	98		70-130	Pass	
Mercury			%	98		70-130	Pass	
Nickel			%	92		70-130	Pass	
Zinc			%	91		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
4.4'-DDT	S17-Ja08683	NCP	%	92		70-130	Pass	
b-BHC	S17-Ja08693	NCP	%	70		70-130	Pass	
Endosulfan sulphate	S17-Ja08693	NCP	%	77		70-130	Pass	
Endrin ketone	S17-Ja08693	NCP	%	78		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1260	S17-Ja14778	NCP	%	108		70-130	Pass	
Spike - % Recovery				1				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-Ja09849	СР	%	119		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S17-Ja09849	CP	%	98		70-130	Pass	
Toluene	S17-Ja09849	CP	%	92		70-130	Pass	
Ethylbenzene	S17-Ja09849	CP	%	93		70-130	Pass	
m&p-Xylenes	S17-Ja09849	CP	%	93		70-130	Pass	
o-Xylene	S17-Ja09849	CP	%	93		70-130	Pass	
Xylenes - Total	S17-Ja09849	CP	%	93		70-130	Pass	
Spike - % Recovery			/0			10100	1 400	
Total Recoverable Hydrocarbons	- 2013 NFPM Fract	ions		Result 1				
Naphthalene	S17-Ja09849	CP	%	80		70-130	Pass	
TRH C6-C10	S17-Ja09849	CP	%	121		70-130	Pass	
Spike - % Recovery			70	1 1 2 1		10100	1 033	
Polycyclic Aromatic Hydrocarbon	e			Result 1				
Acenaphthene	S17-Ja09849	СР	%	92		70-130	Pass	
Acenaphthylene	S17-Ja09849	CP	%	87		70-130	Pass	
Anthracene Benzo(a)pyrene	S17-Ja09849	CP	%	101		70-130	Pass	
80070(0)0/(000	S17-Ja09849	CP	%	90	1 1	70-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1	Ac	cceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene	S17-Ja09849	CP	%	129		70-130	Pass	
Benzo(k)fluoranthene	S17-Ja09849	CP	%	87		70-130	Pass	
Chrysene	S17-Ja09849	CP	%	98		70-130	Pass	
Dibenz(a.h)anthracene	S17-Ja09849	CP	%	111		70-130	Pass	
Fluorene	S17-Ja09849	CP	%	91		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ja09849	CP	%	123		70-130	Pass	
Naphthalene	S17-Ja09849	CP	%	96		70-130	Pass	
Phenanthrene	S17-Ja09849	CP	%	77		70-130	Pass	
Pyrene	S17-Ja09849	CP	%	70		70-130	Pass	
Spike - % Recovery								
Speciated Phenols				Result 1				
2.4-Dichlorophenol	S17-Ja09849	CP	%	96		30-130	Pass	
2.4-Dimethylphenol	S17-Ja09849	CP	%	91		30-130	Pass	
2.4.5-Trichlorophenol	S17-Ja09849	CP	%	91		30-130	Pass	
2.4.6-Trichlorophenol	S17-Ja09849	CP	%	87		30-130	Pass	
Phenol	S17-Ja09849	CP	%	96		30-130	Pass	
2-Methylphenol (o-Cresol)	S17-Ja09849	CP	%	95		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ja09849	CP	%	92		30-130	Pass	
2-Chlorophenol	S17-Ja09849	CP	%	96		30-130	Pass	
2-Nitrophenol	S17-Ja09849	CP	%	73		30-130	Pass	
4-Chloro-3-methylphenol	S17-Ja09849	CP	%	95		30-130	Pass	
Pentachlorophenol	S17-Ja09849	CP	%	41		30-130	Pass	
Spike - % Recovery				·				
Heavy Metals				Result 1				
Arsenic	S17-Ja09852	CP	%	99		70-130	Pass	
Cadmium	S17-Ja09852	CP	%	93		70-130	Pass	
Chromium	S17-Ja09852	CP	%	98		70-130	Pass	
Copper	S17-Ja09852	CP	%	117		70-130	Pass	
Lead	S17-Ja09852	CP	%	103		70-130	Pass	
Mercury	S17-Ja09852	CP	%	96		70-130	Pass	
Nickel	S17-Ja09852	CP	%	94		70-130	Pass	
Zinc	S17-Ja09852	CP	%	90		70-130	Pass	
Spike - % Recovery				•				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C10-C14	S17-Ja09853	CP	%	103		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	S17-Ja09853	CP	%	93		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-Ja09859	CP	%	99		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S17-Ja09859	CP	%	91		70-130	Pass	
Toluene	S17-Ja09859	CP	%	85		70-130	Pass	
Ethylbenzene	S17-Ja09859	CP	%	85		70-130	Pass	
m&p-Xylenes	S17-Ja09859	CP	%	85		70-130	Pass	
o-Xylene	S17-Ja09859	CP	%	85		70-130	Pass	
Xylenes - Total	S17-Ja09859	CP	%	85		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
Naphthalene	S17-Ja09859	CP	%	95		70-130	Pass	
TRH C6-C10	S17-Ja09859	CP	%	100		70-130	Pass	
Spike - % Recovery		<u>.</u> .	,,,					

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbor	ns			Result 1			
Acenaphthene	S17-Ja09859	CP	%	88	70-130	Pass	
Acenaphthylene	S17-Ja09859	CP	%	83	70-130	Pass	
Anthracene	S17-Ja09859	CP	%	88	70-130	Pass	
Benz(a)anthracene	S17-Ja09859	CP	%	73	70-130	Pass	
Benzo(a)pyrene	S17-Ja09859	CP	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	S17-Ja09859	CP	%	82	70-130	Pass	
Benzo(g.h.i)perylene	S17-Ja09859	CP	%	122	70-130	Pass	
Benzo(k)fluoranthene	S17-Ja09859	CP	%	111	70-130	Pass	
Chrysene	S17-Ja09859	CP	%	105	70-130	Pass	
Dibenz(a.h)anthracene	S17-Ja09859	CP	%	105	70-130	Pass	
Fluoranthene	S17-Ja09859	CP	%	83	70-130	Pass	
Fluorene	S17-Ja09859	CP	%	85	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ja09859	CP	%	107	70-130	Pass	
Naphthalene	S17-Ja09859	CP	%	75	70-130	Pass	
Phenanthrene	S17-Ja09859	CP	%	81	70-130	Pass	
Pyrene	S17-Ja09859	CP	%	83	70-130	Pass	
Spike - % Recovery				1			
Speciated Phenols				Result 1			
2.4-Dichlorophenol	S17-Ja09859	CP	%	97	30-130	Pass	
2.4-Dimethylphenol	S17-Ja09859	CP	%	88	30-130	Pass	
2.4.5-Trichlorophenol	S17-Ja09859	CP	%	77	30-130	Pass	
2.4.6-Trichlorophenol	S17-Ja09859	CP	%	90	30-130	Pass	
Phenol	S17-Ja09859	CP	%	93	30-130	Pass	
2-Methylphenol (o-Cresol)	S17-Ja09859	CP	%	94	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ja09859	CP	%	93	30-130	Pass	
2-Chlorophenol	S17-Ja09859	CP	%	94	30-130	Pass	
2-Nitrophenol	S17-Ja09859	CP	%	77	30-130	Pass	
4-Chloro-3-methylphenol	S17-Ja09859	CP	%	91	30-130	Pass	
Pentachlorophenol	S17-Ja09859	CP	%	87	30-130	Pass	
Spike - % Recovery				-	-	-	
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S17-Ja09860	CP	%	74	70-130	Pass	
4.4'-DDD	S17-Ja09860	CP	%	80	70-130	Pass	
4.4'-DDE	S17-Ja09860	CP	%	74	70-130	Pass	
a-BHC	S17-Ja09860	CP	%	77	70-130	Pass	
Aldrin	S17-Ja09860	CP	%	75	70-130	Pass	
d-BHC	S17-Ja09860	CP	%	83	70-130	Pass	
Dieldrin	S17-Ja09860	CP	%	74	70-130	Pass	
Endosulfan I	S17-Ja09860	CP	%	74	70-130	Pass	
Endosulfan II	S17-Ja09860	CP	%	70	70-130	Pass	
Endrin	S17-Ja09860	CP	%	70	70-130	Pass	
Endrin aldehyde	S17-Ja09860	CP	%	71	70-130	Pass	
g-BHC (Lindane)	S17-Ja09860	CP	%	70	70-130	Pass	
Heptachlor	S17-Ja09860	СР	%	75	70-130	Pass	
Heptachlor epoxide	S17-Ja09860	СР	%	72	70-130	Pass	
Hexachlorobenzene	S17-Ja09860	СР	%	91	70-130	Pass	
Methoxychlor	S17-Ja09860	СР	%	72	70-130	Pass	
Spike - % Recovery				1			
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S17-Ja09863	CP	%	99	70-130	Pass	
Spike - % Recovery				1			
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S17-Ja09863	CP	%	86	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				4					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ja09848	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	•								
BTEX				Result 1	Result 2	RPD			
Benzene	S17-Ja09848	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Ja09848	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-Ja09848	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-Ja09848	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-Ja09848	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-Ja09848	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S17-Ja09848	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			y/ivy	~ 20	120			1 400	
Polycyclic Aromatic Hydrocarbons	s			Result 1	Result 2	RPD			
Acenaphthene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S17-Ja09848	CP		< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene			mg/kg		1				
Benzo(b&j)fluoranthene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	Q15
Duplicate							1	1	
Organochlorine Pesticides	1			Result 1	Result 2	RPD			
Chlordanes - Total	S17-Ja09848	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Ja09848	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Ja09848	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Duplicate				Pooult 4	Pooult 2	חחק			
Organochlorine Pesticides	Q17 1-00040	05		Result 1	Result 2	RPD	0.001		
Methoxychlor	S17-Ja09848	CP CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene Duplicate	S17-Ja09848	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Polychlorinated Biphenyls				Result 1	Result 2	RPD	1	1	
Aroclor-1016	C17 Ic00040	СР	maller			<1	209/	Deee	
	S17-Ja09848	CP CP	mg/kg	< 0.5	< 0.5		30% 30%	Pass	
Aroclor-1221 Aroclor-1232	S17-Ja09848	CP CP	mg/kg	< 0.1	< 0.1	<1 <1		Pass	
Aroclor-1232	S17-Ja09848 S17-Ja09848	CP CP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1	30% 30%	Pass Pass	
Aroclor-1242	S17-Ja09848	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S17-Ja09848	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	017 0000040	01	iiig/kg	< 0.5	< 0.5		0070	1 435	
Speciated Phenols				Result 1	Result 2	RPD	1		
2.4-Dichlorophenol	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dimethylphenol	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S17-Ja09848	CP	mg/kg	< 0.5	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S17-Ja09848	CP	mg/kg	<1	<1	<1	30%	Pass	
Phenol	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S17-Ja09848	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ja09848	CP	mg/kg	< 0.4	< 0.2	<1	30%	Pass	
2-Chlorophenol	S17-Ja09848	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Nitrophenol	S17-Ja09848	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4-Chloro-3-methylphenol	S17-Ja09848	CP	mg/kg	<1	<1	<1	30%	Pass	
Pentachlorophenol	S17-Ja09848	CP	mg/kg	< 1	<1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD	1		
Chlordanes - Total	S17-Ja09849	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Ja09849	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Ja09849	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S17-Ja09849	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate								_	
Polychlorinated Biphenyls	1			Result 1	Result 2	RPD			
Aroclor-1016	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S17-Ja09849	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Dumliante									
Duplicate				Devilt	Destrict			1	
Polychlorinated Biphenyls	0.17 1 000.40	0.5	"	Result 1	Result 2	RPD	0.00/		
Aroclor-1254	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-Ja09849	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Decilitat	Destric			1	
Heavy Metals	0.17 1 00054	0.5	"	Result 1	Result 2	RPD	0.00/		
Arsenic	S17-Ja09851	CP	mg/kg	8.9	8.3	7.0	30%	Pass	
Cadmium	S17-Ja09851	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S17-Ja09851	CP	mg/kg	6.9	7.3	6.0	30%	Pass	
Copper	S17-Ja09851	CP	mg/kg	22	24	7.0	30%	Pass	
Lead	S17-Ja09851	CP	mg/kg	71	82	15	30%	Pass	
Mercury	S17-Ja09851	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S17-Ja09851	CP	mg/kg	16	14	11	30%	Pass	
Zinc	S17-Ja09851	CP	mg/kg	55	61	11	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD			
TRH C10-C14	S17-Ja09852	CP	mg/kg	20	< 20	22	30%	Pass	
TRH C15-C28	S17-Ja09852	CP	mg/kg	310	230	30	30%	Pass	
TRH C29-C36	S17-Ja09852	CP	mg/kg	170	130	29	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD		_ ↓	
TRH >C10-C16	S17-Ja09852	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-Ja09852	CP	mg/kg	410	300	30	30%	Pass	
TRH >C34-C40	S17-Ja09852	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1					
				Result 1	Result 2	RPD			
% Moisture	S17-Ja09855	CP	%	14	17	19	30%	Pass	
Duplicate				1	1 1		1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ja09858	CP	mg/kg	20	30	38	30%	Fail	Q15
Duplicate				1	1 1		1		
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-Ja09858	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-Ja09858	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-Ja09858	CP	mg/kg	< 0.5	0.9	200	30%	Fail	Q15
TRH C6-C10	S17-Ja09858	CP	mg/kg	31	46	40	30%	Fail	Q15
Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
					Ttesut 2				
Acenaphthene	S17-Ja09858	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthene Acenaphthylene		CP CP	mg/kg mg/kg			<1 <1	30% 30%	Pass Pass	
	S17-Ja09858			< 0.5	< 0.5				
Acenaphthylene	S17-Ja09858 S17-Ja09858	CP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1	30%	Pass	
Acenaphthylene Anthracene	S17-Ja09858 S17-Ja09858 S17-Ja09858	CP CP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene	S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858	CP CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858 S17-Ja09858	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	S17-Ja09858	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	S17-Ja09858 S17-Ja09858	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	S17-Ja09858	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbor	ls			Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S17-Ja09858	CP	mg/kg	1.7	1.6	7.0	30%	Pass	
Phenanthrene	S17-Ja09858	CP	mg/kg	1.4	1.5	11	30%	Pass	
Pyrene	S17-Ja09858	CP	mg/kg	1.2	1.0	<1	30%	Pass	
Duplicate	017-5205050	01	mg/kg	1.2	1.2		5070	1 435	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I		CP			1 1	<1	30%		
	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
Endosulfan II	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Ja09858		mg/kg	< 0.05	< 0.05	<1		Pass	
Endrin	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Ja09858	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Ja09858	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate					1		1		
Polychlorinated Biphenyls				Result 1	Result 2	RPD		_	
Aroclor-1016	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S17-Ja09858	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					1				
Speciated Phenols	1		1	Result 1	Result 2	RPD			
2.4-Dichlorophenol	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dimethylphenol	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	S17-Ja09858	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S17-Ja09858	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ja09858	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
2-Chlorophenol	S17-Ja09858	CP	mg/kg	1.8	1.6	8.0	30%	Pass	
2-Nitrophenol	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4-Chloro-3-methylphenol	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S17-Ja09858	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S17-Ja09859	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Ja09859	CP		< 0.05	< 0.05	<1	30%	Pass	
			mg/kg						
Aldrin b-BHC	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Ja09859	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Ja09859	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S17-Ja09859	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S17-Ja09859	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-Ja09859	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	017-5805055		mg/kg	< 0.5	< 0.5		3078	1 435	
Total Recoverable Hydrocarbons		lene		Result 1	Result 2	RPD	1		
			mallea				200/	Daga	
TRH C10-C14	S17-Ja09862	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-Ja09862	CP	mg/kg	56	69	21	30%	Pass	
TRH C29-C36	S17-Ja09862	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				I -			1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH >C10-C16	S17-Ja09862	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-Ja09862	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S17-Ja09862	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1	1			1	
	1			Result 1	Result 2	RPD			
% Moisture	S17-Ja09865	CP	%	24	23	3.0	30%	Pass	
Duplicate					1				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ja09868	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
втех	•			Result 1	Result 2	RPD			
Benzene	S17-Ja09868	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Ja09868	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-Ja09868	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-Ja09868	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-Ja09868	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-Ja09868	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
			i iig/Ng	0.0	<u> </u>	<u></u>	0070	1 433	

Duplicate							-		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S17-Ja09868	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	s	-		Result 1	Result 2	RPD			
Acenaphthene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							-		
Speciated Phenols				Result 1	Result 2	RPD			
2.4-Dichlorophenol	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dimethylphenol	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S17-Ja09868	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S17-Ja09868	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S17-Ja09868	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S17-Ja09868	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
2-Chlorophenol	S17-Ja09868	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Nitrophenol	S17-Ja09868	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4-Chloro-3-methylphenol	S17-Ja09868	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S17-Ja09868	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
	E1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya	Analytical Services Manager
Nibha Vaidya	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)
Ryan Hamilton	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)

li ja

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards **NSW 2065** Steven Drysdale Attention: Report 530963-AID **Project Name** CAMPSIE DSI **Project ID** 59917080 **Received Date** Jan 19, 2017 Jan 27, 2017 **Date Reported** Methodology: Asbestos ID Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores. Subsampling Soil The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material Samples passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004. The material is first examined and any fibres isolated and where required interfering organic Bonded fibres or matter may be removed by treating the sample for several hours at a temperature not asbestoscontaining exceeding 400 ± 30°C. The resultant material is then ground and examined in accordance with material (ACM) AS 4964-2004. Limit of Reporting The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt ŇATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	
Project ID	
Date Sampled	
Report	

CAMPSIE DSI 59917080 Jan 17, 2017 to Jan 18, 2017 530963-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH7_0.2	17-Ja09848	Jan 18, 2017	Approximate Sample 24g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW1_0.8	17-Ja09849	Jan 18, 2017	Approximate Sample 33g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW1_4.0	17-Ja09850	Jan 18, 2017	Approximate Sample 36g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW3_0.8	17-Ja09851	Jan 18, 2017	Approximate Sample 30g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH5_0.2	17-Ja09852	Jan 18, 2017	Approximate Sample 14g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH1_1.0-1.5	17-Ja09853	Jan 18, 2017	Approximate Sample 32g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH1_2.4	17-Ja09854	Jan 18, 2017	Approximate Sample 60g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH2_0.5	17-Ja09855	Jan 18, 2017	Approximate Sample 49g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH2_2.4	17-Ja09856	Jan 18, 2017	Approximate Sample 89g Sample consisted of: Red-brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH4_1.5	17-Ja09857	Jan 18, 2017	Approximate Sample 45g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH4_2.5	17-Ja09858	Jan 18, 2017	Approximate Sample 46g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH3_1.8	17-Ja09859	Jan 18, 2017	Approximate Sample 33g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH3_3.0	17-Ja09860	Jan 18, 2017	Approximate Sample 40g Sample consisted of: Red-brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH10_1.8	17-Ja09861	Jan 17, 2017	Approximate Sample 40g Sample consisted of: Light brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH9_1.0	17-Ja09862	Jan 17, 2017	Approximate Sample 34g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH8_0.5	17-Ja09863	Jan 17, 2017	Approximate Sample 78g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH6_1.2	17-Ja09864	Jan 17, 2017	Approximate Sample 35g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH6_1.8	17-Ja09865	Jan 17, 2017	Approximate Sample 131g Sample consisted of: Red-brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW2_1.0	17-Ja09866	Jan 17, 2017	Approximate Sample 95g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW2_4.5	17-Ja09867	Jan 17, 2017	Approximate Sample 45g Sample consisted of: Light brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
QA1	17-Ja09868	Jan 17, 2017	Approximate Sample 63g Sample consisted of: Dark brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyJan 23, 2017Indefinite

Company Name: Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065 Order No.: Report #: Sources 50063 Received:: Jan 19, 2017 1:46 PM Project Name: CAMPSIE DSI 59917080 Steven Drysdale Priority:: 5 Day Contact Name: Steven Drysdale Address: More and Sydney Laboratory - NATA Site # 1254 & 14271 A X <th>nway 05 251 9600</th> <th>)0</th>	nway 05 251 9600)0
Sample Detail Absence PolyCrolic Armaned Bit Name No Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 X		
Sample Detail Ited Phenols Ited Phenols <t< th=""><th>Vaidya</th><th>ya</th></t<>	Vaidya	ya
Sydney Laboratory - NATA Site # 18217 X X X X X X X X X X X X X X X		
Brisbane Laboratory - NATA Site # 20794		
Perth Laboratory - NATA Site # 18217 Soil S17-Ja09869 X S17-Ja09869 <t< th=""><td></td><td></td></t<>		
22 MW 5_3.0 Jan 10, 2017 Soil S17-Ja09809 A Image: Constraint of the second seco		
24 BH9_1.3 Jan 17, 2017 Soil S17-Ja09871 X Image: Constraint of the second of the secon		
25 BH8_1.6 Jan 17, 2017 Soil S17-Ja09872 X		
Test Counts 21 4 21		

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight b	basis grams per	kilogram
Filter loading:	fibres/100	graticule areas
Reported Concentration:	fibres/mL	
Flowrate:	L/min	
Terms		
Dry	Where a moisture has been determined on a solid sample the result is expresse	ed on a dry basis.
LOR	Limit of Reporting.	
COC	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	although possibly broken or fragmented, and where the asbestos is bound in a to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical pla ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to mate	1% asbestos and comprises asbestos-containing-material which is in sound condition, matrix such as cement or resin. Common examples of ACM include but are not limited aster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and rial that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it nents to be smaller than this would imply a high degree of damage and hence potential
FA		It sheet, insulation products and woven asbestos material. This type of friable asbestos can be broken or crumbled by hand pressure. This material is typically unbonded or
PACM	Presumed Asbestos-Containing Material means thermal system insulation and than 1980 that are assumed to contain greater than one percent asbestos but h	surfacing material found in buildings, vessels, and vessel sections constructed no later ave not been sampled or analyzed to verify or negate the presence of asbestos.
AF	small fibres (< 5 microns in length) are not considered to be such a risk. AF also	m. It is the free fibres which present the greatest risk to human health, although very pincludes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. plies a substatntial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (typically 90:1	0 ratios).

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received. The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N/A	Not applicable

Authorised by:

Nibha Vaidya

Senior Analyst - Asbestos(NSW)

Glenn Jackson National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Steven Drysdale CAMPSIE DSI 59917080 Not provided 5 Day Jan 19, 2017 1:46 PM 530963

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Notes

Samples Ja09849, 09450, 09861, 09867 have had sample IDs changed according to labels on jars as per request from Steven Drysdale.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Steven Drysdale - Steven.Drysdale@cardno.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

QUALITY CONTROL REPORT

Work Order	: ES1701520	Page	: 1 of 9	
Client	: CARDNO (NSW/ACT)	Laboratory	: Environmental Division S	Sydney
Contact	MR STEVEN DRYSDALE	Contact	: Customer Services ES	
Address	: Level 9 The Forum 203 Pacific Highway St Leonards NSW 2065	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	: +61 02 9496 7700	Telephone	: +61-2-8784 8555	
Project	: CAMPSIE DSI 59917080	Date Samples Received	: 23-Jan-2017	
Order number	:	Date Analysis Commenced	: 23-Jan-2017	
C-O-C number	:	Issue Date	: 27-Jan-2017	
Sampler	: STEVEN DRYSDALE			Hac-MRA NATA
Site	:			
Quote number	: EN/024/16			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	:1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

Page	: 2 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 729945)								
ES1701497-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	3.8	3.5	8.75	No Limit
EG005T: Total Meta	Is by ICP-AES (QC Lot: 7	730650)							
ES1701276-009	Anonymous	EG005T: Copper	7440-50-8	5	mg/kg	116	108	7.71	0% - 20%
ES1701276-009	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	42	39	6.96	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	16	22	33.2	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	8	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	41	38	6.73	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	251	221	12.8	0% - 20%
ES1701287-008	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	19	20	6.46	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	5	5	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	8	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	6	8	22.6	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	17	17	0.00	No Limit
EG035T: Total Reco	overable Mercury by FIM	S (QC Lot: 730651)							
ES1701276-009	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1701287-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP066: Polychlorina	ated Biphenyls (PCB) (Q	C Lot: 729889)							
ES1701508-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organochl	orine Pesticides (OC)(Q	C Lot: 729888)							
ES1701508-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page	: 3 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

Sub-Matrix: SOIL						Laboratory Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organoch	lorine Pesticides (OC)(QC Lot: 729888) - continued							
ES1701508-001	Anonymous	EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)A: Phen	olic Compounds (QC L	ot: 729886)							
ES1701508-001	Anonymous	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
EP075(SIM)B: Polvi	uclear Aromatic Hydro	carbons (QC Lot: 729886)					1		
ES1701508-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphinene EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene							

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 729886) - continued							
ES1701508-001	Anonymous	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 729887)							
ES1701508-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons								
ES1701567-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1701569-008	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
		ns - NEPM 2013 Fractions (QC Lot: 729887)							
ES1701508-001	Anonymous			100	mg/kg	<100	<100	0.00	No Limit
E31701508-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		50		<50	<50	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	NO LIMIL
	-	ns - NEPM 2013 Fractions (QC Lot: 730372)							
ES1701567-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1701569-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	Cot: 730372)								
ES1701567-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1701569-008	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	5 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC)	EP080: BTEXN (QC Lot: 730372) - continued								
ES1701569-008	Anonymous	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Hig
EG005T: Total Metals by ICP-AES (QCLot: 730	650)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	91.3	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	93.0	83	11:
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	87.8	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	93.2	86	12
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	92.0	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	96.1	87	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	96.5	80	12
EG035T: Total Recoverable Mercury by FIMS((QCLot: 730651)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	89.2	70	105
EP066: Polychlorinated Biphenyls (PCB) (QCL	ot: 729889)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	74.0	62	126
EP068A: Organochlorine Pesticides (OC) (QCL	.ot: 729888)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	105	69	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	106	65	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	96.0	67	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	106	68	110
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	65	11
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.2	67	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	104	69	11
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	103	62	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	99.6	63	11
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	101	66	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	99.6	64	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	103	66	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	94.6	67	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	67	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	91.1	69	11
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	69	12
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	100	56	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.2	62	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	97.7	66	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	85.2	64	12
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	86.2	54	130

Page	: 7 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
	i			Report	Spike	Spike Recovery (%)		Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Hig
EP075(SIM)A: Phenolic Compounds (QCLot: 729886) - co	ntinued							
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	94.0	71	125
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	96.9	72	124
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	90.7	71	123
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	96.9	67	127
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	89.6	54	114
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	90.2	68	126
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	94.1	66	120
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	94.6	70	120
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	95.2	70	116
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	91.9	54	114
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	92.8	60	114
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	36.0	10	57
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	t: 729886)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	91.4	77	12
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	93.2	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	90.7	73	12
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	94.6	72	120
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	95.5	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	93.6	77	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	92.5	73	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	93.1	74	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	91.6	69	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	97.9	75	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	94.9	68	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	94.3	74	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	92.9	70	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	91.9	61	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	93.1	62	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	92.3	63	12
EP080/071: Total Petroleum Hydrocarbons (QCLot: 72988)	7)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	94.8	75	12
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	108	77	13
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	99.8	71	129
	2)	-	.33				-	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 730372		10	mg/kg	<10	26 mg/kg	97.6	68	12
EP080: C6 - C9 Fraction		-	iiig/kg	טור	20 mg/kg	37.0	00	120
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013		,						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	101	77	125

Page	: 8 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCL	ot: 729887) - con	ntinued					
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	100	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	104	63	131
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCL	ot: 730372)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	102	68	128
EP080: BTEXN (QCLot: 730372)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	98.5	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	98.9	67	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	96.5	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	98.0	66	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	99.9	68	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	104	63	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID.	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Met	tals by ICP-AES (QCLot: 730650)						
ES1701276-009	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	89.7	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	91.4	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	86.2	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	93.1	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	90.5	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	95.2	70	130
	EG005T: Zinc	7440-66-6	250 mg/kg	96.7	70	130	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 730651)						
ES1701276-009	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	129	70	130
EP066: Polychlorii	nated Biphenyls (PCB) (QCLot: 729889)						
ES1701508-001	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	113	70	130
EP068A: Organocl	hlorine Pesticides (OC) (QCLot: 729888)						
ES1701508-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	96.8	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	77.6	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	105	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	106	70	130

Page	: 9 of 9
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	: CAMPSIE DSI 59917080

ub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	.imits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP068A: Organoc	hlorine Pesticides (OC) (QCLot: 729888)	- continued							
ES1701508-001	Anonymous	EP068: Endrin	72-20-8	2 mg/kg	94.5	70	130		
		EP068: 4.4'-DDT	50-29-3	2 mg/kg	72.6	70	130		
EP075(SIM)A: Phe	enolic Compounds (QCLot: 729886)								
ES1701508-001	Anonymous	EP075(SIM): Phenol	108-95-2	10 mg/kg	95.8	70	130		
		EP075(SIM): 2-Chlorophenol	95-57-8	10 mg/kg	95.0	70	130		
		EP075(SIM): 2-Nitrophenol	88-75-5	10 mg/kg	87.3	60	130		
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	10 mg/kg	94.6	70	130		
		EP075(SIM): Pentachlorophenol	87-86-5	10 mg/kg	71.0	20	130		
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot:	729886)							
ES1701508-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	93.7	70	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	95.8	70	130		
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 729887)								
ES1701508-001 Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	98.7	73	137			
	EP071: C15 - C28 Fraction		2319 mg/kg	106	53	131			
	EP071: C29 - C36 Fraction		1714 mg/kg	117	52	132			
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 730372)								
ES1701567-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	130	70	130		
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 729887)							
ES1701508-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	112	73	137		
		EP071: >C16 - C34 Fraction		3223 mg/kg	114	53	131		
		EP071: >C34 - C40 Fraction		1058 mg/kg	88.6	52	132		
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 730372)							
ES1701567-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	128	70	130		
EP080: BTEXN (C	(CLot: 730372)								
ES1701567-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	90.7	70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	98.6	70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100	70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	102	70	130		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	103	70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	92.3	70	130		

CERTIFICATE OF ANALYSIS

Work Order	ES1701520	Page	: 1 of 7
Client	: CARDNO (NSW/ACT)	Laboratory	: Environmental Division Sydney
Contact	: MR STEVEN DRYSDALE	Contact	: Customer Services ES
Address	E Level 9 The Forum 203 Pacific Highway	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	St Leonards NSW 2065		
Telephone	: +61 02 9496 7700	Telephone	: +61-2-8784 8555
Project	: CAMPSIE DSI 59917080	Date Samples Received	: 23-Jan-2017 13:45
Order number	:	Date Analysis Commenced	: 23-Jan-2017
C-O-C number	:	Issue Date	27-Jan-2017 17:53
Sampler	: STEVEN DRYSDALE		
Site	:		
Quote number	: EN/024/16		
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page	: 3 of 7
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	CAMPSIE DSI 59917080

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QA2	 	
	Cli	ient sampli	ng date / time	18-Jan-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1701520-001	 	
				Result	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1	%	16.2	 	
EG005T: Total Metals by ICP-AES			1 1			
Arsenic	7440-38-2	5	mg/kg	8	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	6	 	
Copper	7440-50-8	5	mg/kg	22	 	
Lead	7439-92-1	5	mg/kg	61	 	
Nickel	7440-02-0	2	mg/kg	12	 	
Zinc	7440-66-6	5	mg/kg	60	 	
EG035T: Total Recoverable Mercu						
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP066: Polychlorinated Biphenyls		-	3 3			
Total Polychlorinated biphenyls	(РСВ) 	0.1	mg/kg	<0.1	 	
		0.1	mgng	-0.1		
EP068A: Organochlorine Pesticide alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)		0.05		<0.05		
beta-BHC	118-74-1	0.05	mg/kg	<0.05	 	
gamma-BHC	319-85-7	0.05	mg/kg mg/kg	<0.05	 	
delta-BHC	58-89-9	0.05		<0.05		
Heptachlor	319-86-8	0.05	mg/kg	<0.05	 	
•	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
 ^ Total Chlordane (sum) trans-Chlordane 			mg/kg			
	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan cis-Chlordane	959-98-8	0.05	mg/kg	<0.05	 	
Dieldrin	5103-71-9	0.05	mg/kg	<0.05	 	
4.4`-DDE	60-57-1	0.05	mg/kg	<0.05	 	
4.4 -DDE Endrin	72-55-9		mg/kg	<0.05	 	
	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7		mg/kg		 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

Attention:

Steven Drysdale

Report
Project name
Project ID
Received Date

533259-W CAMPSIE DSI 59917080 Feb 07, 2017

Client Sample ID			MW1	MW2	MW3
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Fe07378	S17-Fe07379	S17-Fe07380
Date Sampled			Feb 07, 2017	Feb 07, 2017	Feb 07, 2017
Test/Reference	LOR	Unit			, .
Total Recoverable Hydrocarbons - 1999 NEPM	-	01110			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1
BTEX					
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	87	121	88
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

wpg

acemr/

4 Julia

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			MW1	MW2	MW3
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Fe07378	S17-Fe07379	S17-Fe07380
Date Sampled			Feb 07, 2017	Feb 07, 2017	Feb 07, 2017
Test/Reference	LOR	Unit			,
Polycyclic Aromatic Hydrocarbons	LOIX	Onit			
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	77	111	63
p-Terphenyl-d14 (surr.)	1	%	87	99	71
Organochlorine Pesticides	I •	/0	0.		
Chlordanes - Total	0.001	mg/L	< 0.001	< 0.001	< 0.001
4.4'-DDD	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Toxaphene	0.01	mg/L	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	99	58	92
Tetrachloro-m-xylene (surr.)	1	%	52	54	54
Polychlorinated Biphenyls					
Aroclor-1016	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1221	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1232	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1242	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1248	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1254	0.001	mg/L	< 0.001	< 0.001	< 0.001
Aroclor-1260	0.001	mg/L	< 0.001	< 0.001	< 0.001
Total PCB*	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dibutylchlorendate (surr.)	1	%	99	58	92
Tetrachloro-m-xylene (surr.)	1	%	52	54	54
Total Recoverable Hydrocarbons - 2013 NEP	M Fractions	1			
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1
Heavy Metals		I			
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.003	0.006	0.004
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW1 Water S17-Fe07378 Feb 07, 2017	MW2 Water S17-Fe07379 Feb 07, 2017	MW3 Water S17-Fe07380 Feb 07, 2017
Test/Reference	LOR	Unit			
Heavy Metals					
Nickel (filtered)	0.001	mg/L	0.029	0.003	0.008
Zinc (filtered)	0.005	mg/L	0.18	0.068	0.044

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 10, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 08, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 10, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Feb 09, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 10, 2017	7 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Feb 10, 2017	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Feb 10, 2017	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8 filtered	Sydney	Feb 08, 2017	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			

	🔅 eur	ofins	mgt		ABN– 50 005 e.mail : Enviro web : www.eu	Sales@	eurofins	s.com	2 C P N	IAIA#	ston Tov VIC 31 +61 3 8	wn Close 66 564 500 271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 D Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 18217
Company Name: Cardno (NSW/ACT) Pty Ltd Address: Level 9, 203 Pacific Highway St Leonards NSW 2065 Project Name: CAMPSIE DSI Project ID: 59917080							Re	rder N eport a none: ix:		0) 6 782: 9 390:	
	Sample Detail					Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8 filtered	BTEX and Naphthalene	BTEX and Naphthalene	Total Recoverable Hydrocarbons	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	х		х	х	х	
	ney Laboratory								Х	Х	Х	Х	
	bane Laboratory												
	h Laboratory - N		217										
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID								
	-	-	Time										
1	MW1	Feb 07, 2017			S17-Fe07378	X	X	X	X		Х	X	
2	MW2 MW3	Feb 07, 2017 Feb 07, 2017			S17-Fe07379 S17-Fe07380	X X	X X	X X	X X	X	x	X X	
	Counts		I		517-FE07360	3	3	3	3	3	3	3	
1031	Counts								5			3	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

Tormo

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " --" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	· · · ·	· ·	· · ·		
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		40.001	0.001	1 400	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate		< 0.0001	0.0001	Pass	
Endosuiran suipnate Endrin	mg/L	1			
Endrin aldehyde	mg/L mg/L	< 0.0001 < 0.0001	0.0001	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.001	0.001	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.001	0.001	Pass	
Aroclor-1242	mg/L	< 0.001	0.001	Pass	
Aroclor-1248	mg/L	< 0.001	0.001	Pass	
Aroclor-1254	mg/L	< 0.001	0.001	Pass	
Aroclor-1260	mg/L	< 0.001	0.001	Pass	
Total PCB*	mg/L	< 0.0001	0.001	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	99	70-130	Pass	
TRH C10-C14	%	86	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	114	70-130	Pass	
Toluene	%	115	70-130	Pass	
Ethylbenzene	%	111	70-130	Pass	
m&p-Xylenes	%	104	70-130	Pass	
o-Xylene	%	106	70-130	Pass	
Xylenes - Total	%	105	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	83	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	77	70-130	Pass	
Acenaphthylene	%	82	70-130	Pass	
Anthracene	%	79	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene			%	88		70-130	Pass	
Benzo(b&j)fluoranthene		%	89		70-130	Pass		
Benzo(g.h.i)perylene			%	86		70-130	Pass	
Benzo(k)fluoranthene			%	95		70-130	Pass	
Chrysene			%	77		70-130	Pass	
Dibenz(a.h)anthracene			%	105		70-130	Pass	
Fluoranthene			%	74		70-130	Pass	
Fluorene			%	80		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	90		70-130	Pass	
Naphthalene			%	72		70-130	Pass	
Phenanthrene			%	82		70-130	Pass	
Pyrene			%	71		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	76		70-130	Pass	
4.4'-DDE			%	85		70-130	Pass	
4.4'-DDT			%	88		70-130	Pass	
a-BHC			%	75		70-130	Pass	
Aldrin			%	78		70-130	Pass	
b-BHC			%	114		70-130	Pass	
d-BHC			%	76		70-130	Pass	
Dieldrin			%	105		70-130	Pass	
Endosulfan I			%	83		70-130	Pass	
Endosulfan II			%	102		70-130	Pass	
Endosulfan sulphate			%	128		70-130	Pass	
Endrin			%	111		70-130	Pass	
Endrin aldehyde			%	90		70-130	Pass	
Endrin ketone			%	94		70-130	Pass	
g-BHC (Lindane)			%	72		70-130	Pass	
Heptachlor epoxide			%	83		70-130	Pass	
Hexachlorobenzene			%	86		70-130	Pass	
Methoxychlor			%	92		70-130	Pass	
LCS - % Recovery			/0	92		70-130	газэ	
		lene				1	-	
Total Recoverable Hydrocarbons		lons	0/	05		70.400	Deee	
TRH >C10-C16		0	%	85		70-130	Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1		1		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M17-Fe07351	NCP	%	124		70-130	Pass	
TRH C10-C14	B17-Fe04518	NCP	%	130		70-130	Pass	
Spike - % Recovery								
втех		-	-	Result 1				
Benzene	S17-Fe05377	NCP	%	126		70-130	Pass	
Toluene	S17-Fe05377	NCP	%	125		70-130	Pass	
Ethylbenzene	S17-Fe05377	NCP	%	124		70-130	Pass	
m&p-Xylenes	S17-Fe05377	NCP	%	117		70-130	Pass	
o-Xylene	S17-Fe05377	NCP	%	119		70-130	Pass	
Xylenes - Total	S17-Fe05377	NCP	%	118		70-130	Pass	
Spike - % Recovery					· · ·			
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
Naphthalene	S17-Fe05377	NCP	%	110		70-130	Pass	
TRH C6-C10	S17-Fe05377	NCP	%	104		70-130	Pass	
			, <i>, ,</i> , , , , , , , , , , , , , , , ,		I			
Spike - % Recovery								

Acenaphthylene S Anthracene S Benz(a)anthracene S Benzo(a)pyrene S Benzo(b&j)fluoranthene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Dibenz(a.h.i)perylene S Fluoranthene S Fluoranthene S Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDT M 4.4'-DDT M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	104 109 110 103 107 117 107 110 94 123			70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Anthracene S Benz(a)anthracene S Benzo(a)pyrene S Benzo(b&j)fluoranthene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Dibenz(a.h)anthracene S Fluoranthene S Fluoranthene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDT M 4.4'-DDT M Aldrin M b-BHC M Aldrin M Endosulfan I M Endosulfan II M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	110 103 107 117 107 110 94 123			70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Benz(a)anthracene S Benzo(a)pyrene S Benzo(b&j)fluoranthene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Chrysene S Dibenz(a.h)anthracene S Fluoranthene S Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery S Organochlorine Pesticides M 4.4'-DDD M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan II M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	103 107 117 107 110 94 123			70-130 70-130 70-130 70-130 70-130	Pass Pass Pass	
Benzo(a)pyrene S Benzo(b&j)fluoranthene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Benzo(k)fluoranthene S Dibenz(a.h)anthracene S Fluoranthene S Fluoranthene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery S Organochlorine Pesticides M 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	107 117 107 110 94 123			70-130 70-130 70-130	Pass Pass	
Benzo(b&j)fluoranthene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Chrysene S Dibenz(a.h)anthracene S Fluoranthene S Fluoranthene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % %	117 107 110 94 123			70-130 70-130	Pass	1
Benzo(g.h.i)perylene S Benzo(g.h.i)perylene S Benzo(k)fluoranthene S Chrysene S Dibenz(a.h)anthracene S Fluoranthene S Fluoranthene S Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % %	107 110 94 123			70-130		
Benzo(k)fluoranthene S Chrysene S Dibenz(a.h)anthracene S Fluoranthene S Fluoranthene S Indeno(1.2.3-cd)pyrene S Naphthalene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP NCP	% % % %	110 94 123				Page	
Chrysene S Dibenz(a.h)anthracene S Fluoranthene S Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP NCP	% % %	94 123			70 1 20		
Dibenz(a.h)anthracene S Fluoranthene S Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP NCP	% % %	123			70-130	Pass	ļ
Fluoranthene S Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP NCP	% %				70-130	Pass	<u> </u>
Fluorene S Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	S17-Fe07427 S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP NCP	%				70-130	Pass	
Indeno(1.2.3-cd)pyrene S Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427 S17-Fe07427	NCP NCP		94			70-130	Pass	
Naphthalene S Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427 S17-Fe07427	NCP		112			70-130	Pass	
Phenanthrene S Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	S17-Fe07427		%	110			70-130	Pass	
Pyrene S Spike - % Recovery Organochlorine Pesticides 4.4'-DDD 4.4'-DDE M 4.4'-DDT Aldrin N Aldrin BHC Aldrin Dieldrin Dieldrin Endosulfan I Endosulfan sulphate N		NCP	%	130			70-130	Pass	
Spike - % Recovery Organochlorine Pesticides 4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M	S17-Fe07427	1101	%	116			70-130	Pass	
Organochlorine Pesticides 4.4'-DDD N 4.4'-DDE N 4.4'-DDT N a-BHC N Aldrin N b-BHC N d-BHC N Dieldrin N Endosulfan I N Endosulfan sulphate N		NCP	%	90			70-130	Pass	
4.4'-DDD M 4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M				1	-				
4.4'-DDE M 4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M				Result 1]	
4.4'-DDT M a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	129			70-130	Pass	
a-BHC M Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan III M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	104			70-130	Pass	
Aldrin M b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	102			70-130	Pass	
b-BHC M d-BHC M Dieldrin M Endosulfan I M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	74			70-130	Pass	
d-BHC M Dieldrin M Endosulfan I M Endosulfan II M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	85			70-130	Pass	
Dieldrin M Endosulfan I M Endosulfan II M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	108			70-130	Pass	
Endosulfan I M Endosulfan II M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	100			70-130	Pass	
Endosulfan II M Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	98			70-130	Pass	
Endosulfan sulphate M Endrin M	M17-Fe05663	NCP	%	91			70-130	Pass	
Endrin N	M17-Fe05663	NCP	%	95			70-130	Pass	
	M17-Fe05663	NCP	%	120			70-130	Pass	
Endrin aldehyde	M17-Fe05663	NCP	%	99			70-130	Pass	
	M17-Fe05663	NCP	%	89			70-130	Pass	
Endrin ketone	M17-Fe05663	NCP	%	122			70-130	Pass	
	M17-Fe05663	NCP	%	95			70-130	Pass	
b , , , , , , , , , , , , , , , , , , ,	M17-Fe05663	NCP	%	88			70-130	Pass	
	M17-Fe05663	NCP	%	96			70-130	Pass	
	M17-Fe05663	NCP	%	83		 I	70-130	Pass	
	M17-Fe05663	NCP	%	110			70-130	Pass	
Spike - % Recovery			,.		<u> </u>				
Total Recoverable Hydrocarbons - 20	13 NEPM Fract	tions		Result 1					
	B17-Fe04518	NCP	%	130		 I	70-130	Pass	
	ab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons - 199	99 NEPM Fract	tions		Result 1	Result 2	RPD			
	S17-Fe07436	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
	S17-Fe05971	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
	S17-Fe05971	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
	S17-Fe05971	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				· · ·					
BTEX				Result 1	Result 2	RPD			
	S17-Fe07038	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
		NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	S17-Fe07038	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	S17-Fe07038	NCP	mg/L						
	S17-Fe07038		IIIQ/L	- e		-1	30%	Pace '	
Xylenes - Total		NCP	mg/L	< 0.002 < 0.001	< 0.002 < 0.001	<1 <1	30% 30%	Pass Pass	

Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-Fe07038	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S17-Fe07038	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				10102	10102		0070	1 400	
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M17-Fe04464	NCP	mg/L	0.003	0.004	14	30%	Pass	
Phenanthrene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M17-Fe04464	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate	1								
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
g-BHC (Lindane)	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Methoxychlor	M17-Fe05239	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Toxaphene	M17-Fe05239	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate	·								
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1221	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1232	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1242	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1248	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1254	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Aroclor-1260	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Total PCB*	M17-Fe05239	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate													
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Result 2 RPD													
TRH >C10-C16	S17-Fe05971	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass					
TRH >C16-C34	S17-Fe05971	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass					
TRH >C34-C40	S17-Fe05971	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass					

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) paphthalene data, results may not be identical. Provided correct sample handling protocols have

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Cove Mest NSW 2067 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Company name:	Cardno (NSW/ACT) Pty Ltd
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Steven Drysdale CAMPSIE DSI 59917080 Not provided 5 Day Feb 7, 2017 3:52 PM 533259

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- $\mathbf{\nabla}$ Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Steven Drysdale - Steven.Drysdale@cardno.com.au.

38 Years of Environmental Analysis & Experience

					1.00				_	-		_	_	_	_		_	1
	Cardno Shaping the Future				CHAIN	OF C	UST	ODY .	AND	ANA	LYS	IS RI	EQUE	EST				Page 1 Sat 1
Contact Person:	Steven Drysdale				-	Project N	lame:		Comerly	Del								
Telephone Number:	94967748		-	Project Name: Campsie Dsi Project Number: 59917080														
Alternative Contact:	Hugh Selby			PO No.:														
Telephone Number:	94967700					Project Specific Quote No. :											_	
Sampler:	Steven Drysdale					Date results required: Standard												533259
Email Address (results a	ind invoice):	Hom in adding is	toton com, eu			Report format:												
Address: Level 9 - The F	orum, 203 Pacific Highway, St Le													_	-			
		Sample information				Analysis Required										100	Comments	
Cardno Sample ID	Laboratory Sample ID	No. Containers	Preservation	Date sampled	Matrix	ſPH / BTEXN / PAH	CB (OCP	leavy Metals (8)										
MW1		4		7/02/2017	Water	X	X	X	-	1	<u> </u>			+			+	
MW2		4		7/02/2017	Water	×	x	x					1		+	1		Insufficient sample volume. Run what
MW3	4	4		7/02/2017	Water	X	x	×	-						+		<u> </u>	is possible.
					<u> </u>	1	1		<u> </u>		<u> </u>	+	-	<u> </u>		 	ł	
										1	t	A			1			
											1		1	1	+		+	
														1	<u> </u>		<u> </u>	
	<u> </u>						<u> </u>	L										
		<u> </u>				 	[<u> </u>	<u> </u>	ļ							
												<u> </u>	ļ	L				
									+					<u> </u>			L	
									<u> </u>	+		<u> </u>		<u> </u>				
									<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>				
										1		<u> </u>	<u> </u>		<u> </u>			
									1		1					<u> </u>		
									I.				1					· · · · · · · · · · · · · · · · · · ·
elinquished by:	S. Drysdale	Received by 500	ott Gulla	L	Relinguished by:					Received	by:	·	1	<u>. </u>		B at the second set		
iania / company)	ny) Cardno NSW/ACT (name / company COLUMNSTALLAD - (name / company								(name / co						Relinguis	-		
ete & Time:	7/02/2017 548 Date & Time: Pt Park 7 5 5 Date & Time:								Date & Tin						(name / co			
gnature:		Signature:			Signature:					T						Date & Tin		
aceived by:		Relinquished by:	Just		Received by:				1.00	Signature:						Signature:		
ame / company)		(name / company)			(name / company					Relinquish						Lab use:		
ate & Time:		Date & Time:								(name /-co				_		Samples P	eceived: C	ool or Ambient (circle ene)
ignature:		Signature:			Date & Time:					Date & Tin						Temperatu	re Receive	d at: (if applicable)
	Signature: Signature:						Signature: Transpor							Transporte	d by: Han	by: Hand delivered / courter		

Page	: 4 of 7
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	CAMPSIE DSI 59917080

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QA2	 	
(Cli	ient sampli	ng date / time	18-Jan-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1701520-001	 	
				Result	 	
EP068A: Organochlorine Pesticio	des (OC) - Continued					
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP075(SIM)A: Phenolic Compour						
Phenol	108-95-2	0.5	mg/kg	<0.5	 	
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	 	
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	 	
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	 	
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	 	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	 	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	 	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	 	
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	 	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	 	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	 	
Pentachlorophenol	87-86-5	2	mg/kg	<2	 	
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	

Page	5 of 7
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	CAMPSIE DSI 59917080

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QA2	 	
	Cl	ient sampli	ng date / time	18-Jan-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1701520-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	tinued				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydrocart	oons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	 	
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	0.1	%	108	 	
EP068S: Organochlorine Pesticide Su	rrogate					
Dibromo-DDE	21655-73-2	0.05	%	126	 	

Page	: 6 of 7
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	CAMPSIE DSI 59917080

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID		QA2	 	 	
	Cli	ent sampli	ing date / time	18-Jan-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1701520-001	 	
				Result	 	
EP068T: Organophosphorus Pes	ticide Surrogate					
DEF	78-48-8	0.05	%	68.4	 	
EP075(SIM)S: Phenolic Compour	nd Surrogates					
Phenol-d6	13127-88-3	0.5	%	92.7	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	86.4	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	94.9	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	99.2	 	
Anthracene-d10	1719-06-8	0.5	%	103	 	
4-Terphenyl-d14	1718-51-0	0.5	%	108	 	
EP080S: TPH(V)/BTEX Surrogate	S					
1.2-Dichloroethane-D4	17060-07-0	0.2	%	84.1	 	
Toluene-D8	2037-26-5	0.2	%	106	 	
4-Bromofluorobenzene	460-00-4	0.2	%	114	 	

Page	: 7 of 7
Work Order	: ES1701520
Client	: CARDNO (NSW/ACT)
Project	CAMPSIE DSI 59917080

ALS

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP066S: PCB Surrogate				
Decachlorobiphenyl	2051-24-3	39	149	
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	21655-73-2	49	147	
EP068T: Organophosphorus Pesticide Surro	gate			
DEF	78-48-8	35	143	
EP075(SIM)S: Phenolic Compound Surrogate	s			
Phenol-d6	13127-88-3	63	123	
2-Chlorophenol-D4	93951-73-6	66	122	
2.4.6-Tribromophenol	118-79-6	40	138	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	70	122	
Anthracene-d10	1719-06-8	66	128	
4-Terphenyl-d14	1718-51-0	65	129	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	73	133	
Toluene-D8	2037-26-5	74	132	
4-Bromofluorobenzene	460-00-4	72	130	